

Streamlining the Applied Mathematics Studies at Faculty of Science of Palacký University in Olomouc CZ.1.07/2.2.00/15.0243

INVESTMENTS IN EDUCATION DEVELOPMENT

International Conference Olomoucian Days of Applied Mathematics

ODAM 2011

Department of Mathematical analysis and Applications of Mathematics Faculty of Science Palacký University Olomouc

Multivariate kernel density estimate

Ivana Horová

joint work with Kamila Vopatová – Jan Koláček – Jiří Zelinka – Martin Řezáč

> Department of Mathematics and Statistics Masaryk University, Brno

ODAM 2011

devoted to Professor Lubomír Kubáček in occasion of his 80th birthday

research supported by MŠMT project LC06024 - V08

- Kernel density estimate
- 2 Kernel density gradient estimate
- Simulations
- 4 Real data

Outline

1 Kernel density estimate

Ø Kernel density gradient estimate

Simulations

4 Real data

Motivation

Kernel density estimate: KDE

A kernel density estimate for a *d*-variate random sample X_1, \ldots, X_n drawn from a density *f* is defined as

$$egin{aligned} \hat{f}(\mathbf{x},H) &= rac{1}{n}\sum_{i=1}^n \mathcal{K}_H(\mathbf{x}-\mathbf{X}_i) \ &= rac{1}{n}|H|^{-1/2}\sum_{i=1}^n \mathcal{K}ig(H^{-1/2}(\mathbf{x}-\mathbf{X}_i)ig), \end{aligned}$$

where

- $K \rightarrow a \ d$ -variate kernel function satisfying $\int_{\mathbb{R}^d} K(\mathbf{x}) \ d\mathbf{x} = 1$
- $H \rightarrow$ a symmetric positive definite matrix called the bandwidth matrix
- |H| denotes a determinant of H
- $\mathbf{x} = (x_1, \dots, x_d)^T \in \mathbb{R}^d$

Notation and assumptions

- (A1) $K \rightarrow$ a symmetric probability density function: $\int_{\mathbb{R}^d} K(\mathbf{x}) d\mathbf{x} = 1$, $\int_{\mathbb{R}^d} \mathbf{x} K(\mathbf{x}) d\mathbf{x} = 0$, $\int_{\mathbb{R}^d} \mathbf{x} \mathbf{x}^T K(\mathbf{x}) d\mathbf{x} = \beta_2(K) I_d$, $I_d \rightarrow d \times d$ identity matrix,
- (A2) $R(K) = \int_{\mathbb{R}^d} K^2(\mathbf{x}) \, \mathrm{d}\mathbf{x}$,
- (A3) $R(g) = \int_{\mathbb{R}^d} g(\mathbf{x}) g(\mathbf{x})^T d\mathbf{x}$ for any square integrable vector valued function g.
 - $A^{\otimes r} woheadrightarrow$ the r^{th} Kronecker power of a matrix A, $A^{\otimes 1} = A$, $A^{\otimes 0} = 1$
 - D^{⊗r}f(x) → the vector containing all partial derivatives of the order r of f at x, i.e. if f: ℝ^d → ℝ ⇒ D^{⊗r}f(x) ∈ ℝ^{d^r}, D^{⊗1}f = Df is a gradient of f
 - vec $H \rightarrow d^2 \times 1$ vector obtained by stacking columns of H

Bandwidth matrix H

- The most important factor
- It induces orientation of kernel and controls a spread of a kernel

(B1) $\mathcal{H}_{\mathcal{F}}$: a class of symmetric positive definite $d \times d$ matrices (B2) $\mathcal{H}_{\mathcal{D}} \subset \mathcal{H}_{\mathcal{F}}$: a subclass of diagonal positive definite matrices (B3) $\mathcal{H}_{\mathcal{S}} \subset \mathcal{H}_{\mathcal{D}}$: a subclass of matrices $\mathcal{H}_{\mathcal{S}} = \{h^2 \cdot I_d, h > 0\}$

Bandwidth matrix H

How does matrix H affect the shape of the kernel (bivariate case)

$$\mathcal{H}_{\mathcal{S}}: h^2 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad \mathcal{H}_{\mathcal{D}}: \begin{pmatrix} h_1^2 & 0 \\ 0 & h_2^2 \end{pmatrix} \qquad \qquad \mathcal{H}_{\mathcal{F}}: \begin{pmatrix} h_1^2 & h_{12} \\ h_{12} & h_2^2 \end{pmatrix}$$

For given data

we choose a kernel, e.g. Epanechnikov product kernel

evaluate kernel function in each point

I. Horova et al. (MU)

and get contours of reconstructed density

MISE

The quality of the estimate \hat{f} is measured by the Mean Integrated Square $\mathbf{E}\mathrm{rror}$

$$MISE(H) = E \int \left(\hat{f}(\mathbf{x}, H) - f(\mathbf{x})\right)^2 d\mathbf{x}$$

= $\frac{1}{n} \int \left[(K_H^2 * f)(\mathbf{x}) - (K_H * f)^2(\mathbf{x}) \right] d\mathbf{x}$
+ $\int \left[(K_H * f)(\mathbf{x}) - f(\mathbf{x}) \right]^2 d\mathbf{x}$
= $\int \operatorname{Var} \hat{f}(\mathbf{x}, H) d\mathbf{x} + \int \operatorname{Bias}^2 \hat{f}(\mathbf{x}, H) d\mathbf{x}$

where * denotes a convolution.

AMISE

The MISE can be approximated by AMISE – Asymptotic Mean Integrated Square $\ensuremath{\mathsf{E}}$ rror

Assumptions:

- All the second derivatives of *f* are piecewise continuous and square integrable
- $H = H_n$ is a sequence of bandwidth matrices such that $n^{-1}|H|^{-1/2}$ and all entries of H approach zero as $n \to \infty$
- K satisfies assumptions (A1)

$$\mathsf{AMISE}(H) = \underbrace{n^{-1}|H|^{-1/2}R(K)}_{\mathsf{AIVar}(H)} + \underbrace{\frac{\beta_2(K)^2}{4}(\mathsf{vec}\,H)^TR(D^{\otimes 2}f)(\mathsf{vec}\,H)}_{\mathsf{AIBias}^2(H)},$$

Optimal bandwidth matrix H

• Optimal H with respect to MISE

$$H_{\text{MISE}} = \arg \min_{\mathcal{H}} \text{MISE}(\mathcal{H})$$

• Optimal H with respect to AMISE

$$H_{\text{AMISE}} = \arg \min_{\mathcal{H}} \text{AMISE}(H)$$

Relative rate of convergence

$$\operatorname{vec}(H_{\operatorname{AMISE}} - H_{\operatorname{MISE}}) = O(J_d n^{-2/(d+4)}) \operatorname{vec} H_{\operatorname{MISE}},$$

where J_d is a $d \times d$ matrix of ones.

Choice of the optimal bandwidth matrix

$$\frac{\partial \operatorname{AMISE}(H)}{\partial \operatorname{vec} H} = D_H \operatorname{AMISE}(H) = -\frac{1}{2}n^{-1}|H|^{-1/2}R(K)\operatorname{vec} H^{-1} + \frac{\beta_2(K)^2}{2}R(D^{\otimes 2}f)\operatorname{vec} H$$

 H_{AMISE} is the solution of the equation $D_H \text{AMISE}(H) = \mathbf{0}$. For d > 2 there is not close form expression for the solution of this equation.

Lemma

Let H_{AMISE} be a minimum of AMISE(H). Then

$$AIVar(H_{AMISE}) = \frac{4}{d} AIBias^2(H_{AMISE}).$$

Remark. $H_{AMISE} = O(J_d n^{-2/(d+4)})$ and $AMISE(H_{AMISE}) = O(n^{-4/(d+4)})$.

Data-driven bandwidth matrix selectors

• The least square cross-validation (LSCV) targets MISE and employs the objective function

$$\mathsf{LSCV}(H) = \int_{\mathbb{R}^d} \hat{f}^2(\mathbf{x}, H) \, \mathrm{d}\mathbf{x} - \frac{2}{n} \sum_{i=1}^n \hat{f}_{-i}(\mathbf{X}_i, H)$$

where $\hat{f}_{-i}(\mathbf{X}_i, H) = \frac{1}{n-1} \sum_{\substack{j=1\\j \neq i}}^n \mathcal{K}_H(\mathbf{X}_i - \mathbf{X}_j), \quad i = 1, \dots, n.$

$$\widehat{H}_{\mathsf{LSCV}} = rg \min_{\mathcal{H}} \mathsf{LSCV}(\mathcal{H})$$

E[LSCV(H)] = MISE(H) - R(f).

- Biased cross-validation (BCV) involves estimation of AMISE
- Smooth cross-validation (SCV) is a hybrid of LSCV and BCV
- Plug-in method (PI) estimates the functional $R(D^{\otimes 2}f)$ in the AMISE

Estimate of AMISE

$$\widehat{\mathsf{AMISE}}(H) = \int_{\mathbb{R}^d} \widehat{\mathsf{Var}}(\widehat{f}(\mathbf{x}, H)) \, \mathrm{d}\mathbf{x} + \int_{\mathbb{R}^d} \widehat{\mathsf{Bias}}^2(\widehat{f}(\mathbf{x}, H)) \, \mathrm{d}\mathbf{x}$$
$$= \mathsf{AI}\,\widehat{\mathsf{Var}}(H) + \mathsf{AI}\,\widehat{\mathsf{Bias}}^2(H),$$

where

$$AI\widehat{Var}(H) = \frac{1}{n}|H|^{-1/2}R(K),$$

$$AI\widehat{Bias}(H) = \frac{1}{n^2}\sum_{i,j=1}^{n} (K_H * K_H * K_H * K_H - 2K_H * K_H * K_H)$$

$$+ K_H * K_H (\mathbf{X}_i - \mathbf{X}_j)$$

Let

$$\widehat{H}_{AMISE} = \arg \min_{\mathcal{H}} \widehat{AMISE}(H).$$

. Horova et al. (MU)

API – Method for data-driven bandwidth matrix selector

API method is based on the Lemma, i.e. to select such a matrix $\widehat{H}_{\rm AMISE}$ for which the equation

$$AIVar(H) = \frac{4}{d} AIBias^2(H)$$

is satisfied. This equation can be rewritten as

$$|H|^{1/2}=\frac{dR(K)}{4ng(H)},$$

where

$$g(H) = \sum_{i,j=1}^{n} (K_H * K_H * K_H * K_H - 2K_H * K_H * K_H + K_H * K_H) (\mathbf{X}_i - \mathbf{X}_j).$$

Previous equation is nonlinear equation for d(d+1)/2 unknowns – entries of \hat{H}_{AMISE} . Additional equations:

• $\mathcal{H} = \mathcal{H}_{\mathcal{S}} \twoheadrightarrow$ the only equation for h

•
$$\mathcal{H} = \mathcal{H}_{\mathcal{D}} \rightarrow \hat{\mathcal{H}}_{AMISE} = diag(h_1^2, \dots, h_d^2)$$

Scott's rule in \mathbb{R}^d : $\hat{h}_i = \hat{\sigma}_i n^{-1/(d+4)}$ for $i = 1, \dots, d$, $\Rightarrow \hat{h}_i = \frac{\hat{\sigma}_i}{\hat{\sigma}_1} \hat{h}_1$, $\hat{\sigma}$ is a sample standard deviation estimate

• $\mathcal{H} = \mathcal{H}_{\mathcal{F}} \rightarrow$ we can adopt a similar idea as in the case of the diagonal matrix: $\widehat{\Sigma} = (\widehat{\sigma}_{ij})_{i,j=1}^{d}$ is an estimate of a sample covariance matrix: $h_{1}^{2} = h_{11} = \widehat{\sigma}_{11} n^{-2/(d+4)}, \qquad h_{i}^{2} = h_{ii} = \frac{\widehat{\sigma}_{ii}}{\widehat{\sigma}_{11}} h_{11}$ for i = 2, ..., d, $h_{ij} = \frac{\operatorname{sign} \widehat{\sigma}_{ij} |\widehat{\sigma}_{ij}|}{\widehat{\sigma}_{11}} h_{11}$ for i, j = 2, ..., d, $i \neq j$

API – special case

 $d = 2, H \in \mathcal{H}_{\mathcal{D}}$

$$AMISE(h_{1}, h_{2}) = \underbrace{\frac{1}{nh_{1}h_{2}}R(K)}_{AIVar} + \underbrace{\frac{1}{4}\beta_{2}(K)^{2}(h_{1}^{4}\psi_{40} + 2h_{1}^{2}h_{2}^{2}\psi_{22} + h_{2}^{4}\psi_{04})}_{AIBias^{2}},$$

where

$$\psi_{k\ell} = \int \left(\frac{\partial^2 f}{\partial x_1^2}\right)^{k/2} \left(\frac{\partial^2 f}{\partial x_2^2}\right)^{\ell/2} \, \mathrm{d}\mathbf{x} \qquad k, \ell = 0, 2, 4, \quad k + \ell = 4$$

API1 and API2 methods

API1 method:

$$g(\hat{h}_1, \hat{h}_2) = \frac{n}{2}R(K) \qquad \hat{h}_2 = \frac{\hat{\sigma}_2}{\hat{\sigma}_1}\hat{h}_1$$

API2 method:

$$g(\hat{h}_1, \hat{h}_2) = \frac{n}{2}R(K)$$
 $\hat{h}_2 = \left(\frac{\hat{\psi}_{40}}{\hat{\psi}_{04}}\right)^{1/4}\hat{h}_1$

•
$$\hat{\psi}_{04} = \frac{1}{n^2 h_1 h_2^5} \sum_{i,j=1}^{n} C_K \left(\frac{X_{1j} - X_{1i}}{h_1} \right) C_{K''} \left(\frac{X_{2j} - X_{2i}}{h_2} \right)$$

• $\hat{\psi}_{40} = \frac{1}{n^2 h_1^5 h_2} \sum_{i,j=1}^{n} C_{K''} \left(\frac{X_{1j} - X_{1i}}{h_1} \right) C_K \left(\frac{X_{2j} - X_{2i}}{h_2} \right)$
• $C_K(x) = \int K(t) K(x - t) dt, \quad C_{K''}(x) = \int K''(t) K(x - t) dt$

API1 method – basis

I. Horova et al. (MU)

API2 method – basis

Outline

• Kernel density estimate

2 Kernel density gradient estimate

B Simulations

4 Real data

Kernel density gradient estimate

A kernel estimate of a gradient Df is defined as

$$\widehat{Df}(\mathbf{x},H) = \frac{1}{n} \sum_{i=1}^{n} DK_{H}(\mathbf{x} - \mathbf{X}_{i}),$$

where $DK_H(\mathbf{x}) = |H|^{-1/2} H^{-1/2} DK(H^{-1/2}\mathbf{x})$, MISE is the measure of the quality of the estimate

$$\mathsf{MISE}(\widehat{Df}, H) = \int E(\widehat{Df}(\mathbf{x}, H) - Df(\mathbf{x}))(\widehat{Df}(\mathbf{x}, H) - Df(\mathbf{x}))^T d\mathbf{x}$$
$$= \int \mathsf{Var}(\widehat{Df}(\mathbf{x}, H)) d\mathbf{x} + \int \|\widehat{EDf}(\mathbf{x}, H) - Df(\mathbf{x})\|_2^2 d\mathbf{x}$$

 $\|\cdot\|_2$ denotes Euclidean norm.

MISE is a matrix for a gradient estimate. Duong et al. (2008) proposed to use the Trace of the Asymptotic Mean Integrated Square Error: TAMISE

$$\mathsf{TAMISE}(H) = n^{-1} |H|^{-1/2} \operatorname{tr} [H^{-1}R(DK)] + \frac{\beta_2(K)^2}{4} \operatorname{tr} (I_d \otimes \operatorname{vec}^T H) R(D^{\otimes 3}f) (I_d \otimes \operatorname{vec} H).$$

TAMISE – special case

In the bivariate case with a diagonal bandwidth matrix TAMISE can be rewritten in the form

$$\begin{split} \mathsf{TAMISE}(H) &= \\ &= \underbrace{\frac{1}{nh_1^3h_2^3} \left(h_2^2 R(\partial_1 K) + h_1^2 R(\partial_2 K)\right)}_{\mathsf{TIVar}} \\ &+ \underbrace{\frac{1}{4} \beta_2(K)^2 \left(h_1^4(\psi_{60} + \psi_{42}) + 2h_1^2 h_2^2(\psi_{42} + \psi_{24}) + h_2^4(\psi_{24} + \psi_{06})\right)}_{\mathsf{TIBias}^2}, \end{split}$$
where $R(\partial_i K) = \int \left(\frac{\partial K(\mathbf{x})}{\partial x_i}\right)^2 \, \mathrm{d}\mathbf{x}, \ i = 1, 2.$

Bandwidth matrix choice

Let H_T be a bandwidth matrix minimizing TAMISE:

$$H_T = \arg \min_{\mathcal{H}} \mathsf{TAMISE}(H).$$

Then

$$H_T = O(J_d n^{-2/(d+6)}),$$
 and $TAMISE(H_T) = O(n^{-4/(d+6)}),$

 H_T is the solution of

$$D_H \text{TAMISE} = \frac{\partial \text{TAMISE}(H)}{\partial \text{vec } H} = \mathbf{0}$$

 \rightarrow there is not any explicit solution.

Data - driven bandwidth matrix choice

Practical bandwidth matrix choice

In the case of diagonal bandwidth matrix $(H_T \in \mathcal{H}_D)$:

$$\hat{H}_{\mathcal{T}} = \text{diag}(\hat{h}_{T1}^2, \dots, \hat{h}_{Td}^2), \hat{h}_{Ti}^2 = \hat{h}_i^2 n^{\frac{4}{(d+4)(d+6)}} (\hat{\sigma}_i^2)^{\frac{4}{(d+4)(d+6)}},$$

where \hat{h}_i (i = 1, ..., d) are optimal bandwidths for density estimate, $\hat{\sigma}_i$ (i = 1, ..., d) are estimates of sample standard deviations.

TAMISE estimate and TAPI method

Lemma

Let H_T be a minimizer of TAMISE. Then

$$\frac{d+2}{4}\operatorname{TIVar}(H_{\mathcal{T}})=\operatorname{TIBias}^2(H_{\mathcal{T}}).$$

This equation can be rewritten as

$$|H|^{1/2} = \frac{d+2}{4n} \frac{\operatorname{tr} \left[H^{-1} R(DK) \right]}{\operatorname{TIBias}^2(H)}$$

TAPI method

The idea of TAPI method is the same as in the case of density estimate, we use a suitable estimate of TIBias²(H)

$$\begin{split} \widehat{\mathsf{TIBias}}^2(H) &= \mathrm{tr} \; \frac{1}{n^2} \sum_{i,j=1}^n \int \left[(K_H * DK_H - DK_H) (\mathbf{x} - \mathbf{X}_i) \right] \times \\ &\times \left[(K_H * DK_H - DK_H) (\mathbf{x} - \mathbf{X}_j) \right]^T \; \mathrm{d}\mathbf{x}. \end{split}$$

The additional equations can be obtained by means of practical bandwidth choice and Scott's rule.

TAPI method – basis

Outline

- Kernel density estimate
- Ø Kernel density gradient estimate
- Simulations
- 4 Real data

Simulations

- density $f \sim N_2(\mu_1, \mu_2; \sigma_1^2, \sigma_2^2, \varrho)$
- normal kernel

$$K(x_1, x_2) = \frac{1}{2\pi} \exp\left(-\frac{x_1^2}{2} - \frac{x_2^2}{2}\right)$$

- number of observation n = 100
- number of repetition R = 100

Simulations

The integrated square error

• for density *f* :

$$\mathsf{ISE}(\hat{f}, H) = \int [\hat{f}(\mathbf{x}, H) - f(\mathbf{x})]^2 \, \mathrm{d}\mathbf{x}$$

 $\overline{\mathsf{ISE}} = \operatorname{avg} \mathsf{ISE}(\hat{f}, H),$

• for density gradient Df:

$$\mathsf{TISE}(\widehat{Df}, H) = \mathsf{tr} \int \left[\widehat{Df}(\mathbf{x}, H) - Df(\mathbf{x})\right] \left[\widehat{Df}(\mathbf{x}, H) - Df(\mathbf{x})\right]^{\mathsf{T}} \, \mathrm{d}\mathbf{x}$$

 $\overline{\mathsf{TISE}} = \operatorname{avg} \mathsf{TISE}(\widehat{Df}, H),$

where the average is taken over simulated samples.

Normal A

 $\boldsymbol{X} \sim \textit{N}_2(0,0;1/4,1,0)$

avg	std
0.0097	0.0043
0.0234	0.0030
avg	std
0.0801	0.0306
0.0866	0.0263
	avg 0.0097 0.0234 avg 0.0801 0.0866

Simulations

Normal L

 $\boldsymbol{X} \sim \textit{N}_2(0,0;1,1,4/5)$

ISE	avg	std
H _{API1}	0.0077	0.0035
H _{AMISE}	0.0224	0.0031
TISE	avg	std
TISE H _{TAPI}	avg 0.0693	std 0.0295

Simulations

Normal D

$$\begin{split} \textbf{X} &\sim 1/5\textit{N}_2(0,0;1,1,0) + 1/5\textit{N}_2(1/2,1/2;4/9,4/9,0) \\ &\quad + 3/5\textit{N}_2(13/12,13/12;25/81,25/81,0) \end{split}$$

ISE	avg	std
H _{API1}	0.0109	0.0046
HAMISE	0.0333	0.0045
TISE	avg	std
TISE H _{TAPI}	avg 0.0889	std 0.0294

Normal P

 $\boldsymbol{X} \sim 1/3\textit{N}_2(0,0;1,1,0) + 1/3\textit{N}_2(0,4;1,4,0) + 1/3\textit{N}_2(4,0;4,1,0)$

ISE	avg	std
H _{API1}	0.0027	0.0008
H _{AMISE}	0.0027	0.0007
TISE	avg	std
TISE H _{TAPI}	avg 0.0055	std 0.0013

Simulations

Normal R

$$\mathbf{X} \sim 1/2N_2(1,-1;4/9,4/9,3/5) + 1/2N_2(-1,1;4/9,4/9,3/5)$$

ISE	avg	std
H _{API1}	0.0189	0.0040
H _{AMISE}	0.0146	0.0029
TISE	avg	std
TISE H _{TAPI}	avg 0.1709	std 0.0242

The average of ISE with a standard deviation:

density	$ISE(H_{API1})$		ISE(<i>H</i>	amise)
	avg	std	avg	std
A	0.0097	0.0043	0.0234	0.0030
L	0.0077	0.0035	0.0224	0.0031
D	0.0109	0.0046	0.0333	0.0045
Р	0.0027	0.0008	0.0027	0.0007
R	0.0189	0.0040	0.0146	0.0029

The average of TISE with a standard deviation:

density	TISE(<i>H</i> _{TAPI})		TISE(<i>H</i>	TAMISE)
	avg	std	avg	std
A	0.0801	0.0306	0.0866	0.0263
L	0.0693	0.0295	0.0755	0.0250
D	0.0889	0.0294	0.0907	0.0265
Р	0.0055	0.0013	0.0049	0.0010
R	0.1709	0.0242	0.1049	0.0269

Outline

- Kernel density estimate
- Ø Kernel density gradient estimate
- **B** Simulations
- 4 Real data

Concentration of plasma cholesterol and plasma triglyceride taken on 320 patients with chest pain in a heart disease study.

- X_1 cholesterol [mg/100 ml]
- X_2 triglyceride [mg/100 ml]

Lipids: density

The reconstructed density with a diagonal bandwidth matrix $H = \text{diag}(14.99^2, 25.58^2)$.

Lipids: density gradient

The reconstructed density gradient with a diagonal bandwidth matrix $H_T = \text{diag}(31.57^2, 68.34^2)$.

Real data

Lipids: \hat{f} and $\widehat{Df} = 0$

 $\partial f/\partial x_1 = 0 \quad \partial f/\partial x_2 = 0$

I. Horova et al. (MU)

Real data

References

- J.E. Chacón, T. Duong, M.P. Wand: Asymptotics for general multivariate kernel density derivative estimators, (preprint), 2008.
- T. Duong, A. Cowling, I. Koch, M.P. Wand: Feature significance for multivariate kernel density estimation, *Computational Statistics and Data Analysis*, vol. 52, pp. 4225–4242, 2008.
- I. Horová, J. Koláček, K. Vopatová: Visualization and Bandwidth Matrix Choice, *Communications in Statistics Theory and Methods*, to appear.
- D.W. Scott: *Multivariate Density Estimation: Theory, Practice, and Visualization*, New York: John Wiley and Sons, 1992.
- K. Vopatová, I. Horová, J. Koláček: Bandwidth Matrix Choice for Bivariate Kernel Density Derivative, *Proceedings of IWSM*, pp. 561-564, 2010.
- M.P. Wand, M.C. Jones: *Kernel Smoothing*, London: Chapman and Hall, 1995.