

Streamlining the Applied Mathematics Studies at Faculty of Science of Palacký University in Olomouc CZ.1.07/2.2.00/15.0243

INVESTMENTS IN EDUCATION DEVELOPMENT

International Conference Olomoucian Days of Applied Mathematics

ODAM 2011

Department of Mathematical analysis and Applications of Mathematics Faculty of Science Palacký University Olomouc

ODAM'2011

THE TYPE A UNCERTAINTY Kubáček, L., Tesaříková, E.

FORMULATION OF THE PROBLEM

ESTIMATION OF THE TYPE A UNCERTAINTY IN A LINEAR MODEL

INSENSITIVITY REGION FOR A DISPERSION OF THE ESTIMATOR OF LINEAR FUNCTIONS

LINEARIZATION REGION FOR THE BIAS OF THE ESTIMATOR

NUMERICAL EXAMPLE

FORMULATION OF THE PROBLEM

The following model is considered

$$\left(\begin{array}{c} \widehat{\mathbf{\Theta}} \\ \mathbf{Y} \end{array}\right) \sim N_{l+n} \left[\left(\begin{array}{cc} \mathbf{I}, & \mathbf{0} \\ \mathbf{D}, & \mathbf{X} \end{array}\right) \left(\begin{array}{c} \mathbf{\Theta} \\ \boldsymbol{\beta} \end{array}\right), \left(\begin{array}{c} \mathbf{W}, & \mathbf{0} \\ \mathbf{0}, & \boldsymbol{\Sigma} \end{array}\right) \right]$$

- Θ ... the parameter of the 1st stage,
- β ... the parameter of the 2nd stage,
- W ... the type B uncertainty.

The BLUE of the parameter β is

$$\widehat{\boldsymbol{\beta}}(\mathbf{Y},\widehat{\boldsymbol{\Theta}}) = [\mathbf{X}'(\boldsymbol{\Sigma} + \mathbf{D}\mathbf{W}\mathbf{D}')^{-1}\mathbf{X}]^{-1}\mathbf{X}'(\boldsymbol{\Sigma} + \mathbf{D}\mathbf{W}\mathbf{D}')^{-1}(\mathbf{Y} - \mathbf{D}\widehat{\boldsymbol{\Theta}})$$

and its covariance matrix

$$\begin{aligned} \operatorname{Var}[\widehat{\boldsymbol{\beta}}(\mathbf{Y},\widehat{\boldsymbol{\Theta}})] &= [\mathbf{X}'(\boldsymbol{\Sigma} + \mathbf{D}\mathbf{W}\mathbf{D}')^{-1}\mathbf{X}]^{-1} \\ &= (\mathbf{X}'\boldsymbol{\Sigma}^{-1}\mathbf{X})^{-1} + (\mathbf{X}'\boldsymbol{\Sigma}^{-1}\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{\Sigma}^{-1}\mathbf{D}\mathbf{W}\mathbf{D}'\boldsymbol{\Sigma}^{-1}\mathbf{X}(\mathbf{X}'\boldsymbol{\Sigma}^{-1}\mathbf{X})^{-1}. \end{aligned}$$

The type A uncertainty = $(\mathbf{X}' \boldsymbol{\Sigma}^{-1} \mathbf{X})^{-1}$.

The type B uncertainty =
$$(\mathbf{X}'\boldsymbol{\Sigma}^{-1}\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{\Sigma}^{-1}\mathbf{D}\mathbf{W}\mathbf{D}'\boldsymbol{\Sigma}^{-1}\mathbf{X}(\mathbf{X}'\boldsymbol{\Sigma}^{-1}\mathbf{X})^{-1}$$
.

If $\Sigma = \sigma^2 V$ the problem is to estimate σ^2 on the basis Y resp. Y - D $\widehat{\Theta}$.

Assumption: the model is regular and W is known matrix.

ESTIMATION OF THE TYPE A UNCERTAINTY IN LINEAR MODELS

The estimator based on Y :

$$\hat{\sigma}_1^2 = \mathbf{Y}' \left(\mathbf{M}_{(D,X)} \mathbf{V} \mathbf{M}_{(D,X)} \right)^+ \mathbf{Y} / [n - r(\mathbf{D}, \mathbf{X})]$$
$$\operatorname{Var}(\hat{\sigma}_1^2) = \frac{2\sigma^4}{n - r(\mathbf{D}, \mathbf{X})}.$$

need not exist ! $(n = r(\mathbf{D}, \mathbf{X}))$

$$\begin{aligned} \overline{\text{The estimator based on } \mathbf{Y} - \mathbf{D}\widehat{\Theta}:} \\ \widehat{\sigma}_2^2 &= \frac{A - B}{\text{Tr}[(\mathbf{M}_X \boldsymbol{\Sigma}_0 \mathbf{M}_X)^+ \mathbf{V}(\mathbf{M}_X \boldsymbol{\Sigma}_0 \mathbf{M}_X)^+ \mathbf{V}]}. \\ \mathbf{\Sigma}_0 &= \sigma_0^2 \mathbf{V} + \mathbf{D} \mathbf{W} \mathbf{D}', \\ A &= (\mathbf{Y} - \mathbf{D}\widehat{\Theta})' (\mathbf{M}_X \boldsymbol{\Sigma}_0 \mathbf{M}_X)^+ \mathbf{V} (\mathbf{M}_X \boldsymbol{\Sigma}_0 \mathbf{M}_X)^+ (\mathbf{Y} - \mathbf{D}\widehat{\Theta}), \\ B &= \text{Tr}[(\mathbf{M}_X \boldsymbol{\Sigma}_0 \mathbf{M}_X)^+ \mathbf{V} (\mathbf{M}_X \boldsymbol{\Sigma}_0 \mathbf{M}_X)^+ \mathbf{D} \mathbf{W} \mathbf{D}'] \\ \text{Var}_{\sigma_0^2}(\widehat{\sigma}_2^2) &= \frac{2}{\text{Tr}[(\mathbf{M}_X \boldsymbol{\Sigma}_0 \mathbf{M}_X)^+ \mathbf{V} (\mathbf{M}_X \boldsymbol{\Sigma}_0 \mathbf{M}_X)^+ \mathbf{V}]}. \end{aligned}$$

$$\frac{\text{The estimator based on } \mathbf{Y} - \mathbf{D}\widehat{\Theta}:}{\widehat{\sigma}_{3}^{2} = (\mathbf{Y} - \mathbf{D}\widehat{\Theta})'(\mathbf{M}_{X}\boldsymbol{\Sigma}_{0}\mathbf{M}_{X})^{+}(\lambda_{1}\mathbf{V} + \lambda_{2}\mathbf{D}\mathbf{W}\mathbf{D}')(\mathbf{M}_{X}\boldsymbol{\Sigma}_{0}\mathbf{M}_{X})^{+}(\mathbf{Y} - \mathbf{D}\widehat{\Theta})}$$
$$\operatorname{Var}_{\sigma_{0}^{2}}(\widehat{\sigma}_{3}^{2}) = 2(1,0)\mathbf{S}_{V,DWD'}^{-1}\begin{pmatrix}1\\0\end{pmatrix},$$
where
$$\mathbf{S}_{V,DWD'}\begin{pmatrix}\lambda_{1}\\\lambda_{2}\end{pmatrix} = \begin{pmatrix}1\\0\end{pmatrix}$$

and

$$\begin{split} \mathbf{S}_{V,DWD'} &= \left(\begin{array}{cc} \mathbf{a}\mathbf{a}, & \mathbf{a}\mathbf{b} \\ \mathbf{b}\mathbf{a}, & \mathbf{b}\mathbf{b} \end{array} \right), \\ \mathbf{a}\mathbf{a} &= \operatorname{Tr}[\mathbf{V}(\mathbf{M}_X\boldsymbol{\Sigma}_0\mathbf{M}_X)^+\mathbf{V}(\mathbf{M}_X\boldsymbol{\Sigma}_0\mathbf{M}_X)^+], \\ \mathbf{a}\mathbf{b} &= \operatorname{Tr}[\mathbf{V}(\mathbf{M}_X\boldsymbol{\Sigma}_0\mathbf{M}_X)^+\mathbf{D}\mathbf{W}\mathbf{D}'(\mathbf{M}_X\boldsymbol{\Sigma}_0\mathbf{M}_X)^+] = \mathbf{b}\mathbf{a}, \\ \mathbf{b}\mathbf{b} &= \operatorname{Tr}[\mathbf{D}\mathbf{W}\mathbf{D}'(\mathbf{M}_X\boldsymbol{\Sigma}_0\mathbf{M}_X)^+\mathbf{D}\mathbf{W}\mathbf{D}'(\mathbf{M}_X\boldsymbol{\Sigma}_0\mathbf{M}_X)^+] \end{split}$$

In the case of normality it is valid that

$$\operatorname{Var}_{\sigma_{\mathbf{0}}^{\mathbf{2}}}(\widehat{\sigma}_{\mathbf{2}}^{\mathbf{2}}) \leq \operatorname{Var}_{\sigma_{\mathbf{0}}^{\mathbf{2}}}(\widehat{\sigma}_{\mathbf{3}}^{\mathbf{2}})$$

$$\frac{\text{The estimator based on } \mathbf{Y} - \mathbf{D}\widehat{\Theta}:}{\widehat{\sigma}_4^2} = \frac{(\mathbf{Y} - \mathbf{D}\widehat{\Theta})'(\mathbf{M}_X \Sigma_0 \mathbf{M}_X)^+ (\mathbf{Y} - \mathbf{D}\widehat{\Theta}) - \text{Tr}[(\mathbf{M}_X \Sigma_0 \mathbf{M}_X)^+ \mathbf{D} \mathbf{W} \mathbf{D}']}{n - r(\mathbf{X})},$$

$$\operatorname{Var}_{\sigma_0^2}(\widehat{\sigma}_4^2) = \frac{2\sigma^4}{n - r(\mathbf{X})} + \frac{4\sigma^{2'}\operatorname{Tr}[(\mathbf{M}_X \Sigma_0 \mathbf{M}_X)^+ \mathbf{D} \mathbf{W} \mathbf{D}'(\mathbf{M}_x \Sigma_0 \mathbf{M}_X)^+ \mathbf{V}]}{[n - r(\mathbf{X})]^2} + \frac{2\operatorname{Tr}[(\mathbf{M}_X \Sigma_0 \mathbf{M}_X)^+ \mathbf{D} \mathbf{W} \mathbf{D}'(\mathbf{M}_X \Sigma_0 \mathbf{M}_X)^+ \mathbf{D} \mathbf{W} \mathbf{D}']}{[n - r(\mathbf{X})]^2}$$

INSENSITIVITY REGION FOR THE DISPERSION OF THE ESTIMATOR OF LINEAR FUNCTIONS

Let $h(\beta) = \mathbf{h}'\beta$, $\beta \in \mathbb{R}^k$. The neighbourhood $\mathcal{N}_{h'\beta}$ od the parameter σ_0^2 with the property

$$\sigma^{2} \in \mathcal{N}_{h'\beta} \Rightarrow \sqrt{\operatorname{Var}_{\sigma_{0}^{2}}[\mathbf{h}'\widehat{\boldsymbol{\beta}}(\sigma^{2})]} \leq (1+\varepsilon)\sqrt{\operatorname{Var}_{\sigma_{0}^{2}}[\mathbf{h}'\widehat{\boldsymbol{\beta}}(\sigma_{0}^{2})]}$$

is called the insensitivity region.

In our case

$$\begin{split} \mathcal{N}_{h'\beta} &= \bigg\{ \sigma^2 : |\sigma^2 - \sigma_0^2| \leq \\ &\leq \sqrt{\frac{2\varepsilon \mathbf{h}'(\mathbf{X}'\boldsymbol{\Sigma}_0^{-1}\mathbf{X})^{-1}\mathbf{h}}{\mathbf{h}'(\mathbf{X}'\boldsymbol{\Sigma}_0^{-1}\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{\Sigma}_0^{-1}\mathbf{V}(\mathbf{M}_X\boldsymbol{\Sigma}_0\mathbf{M}_X)^+\mathbf{V}\boldsymbol{\Sigma}_0^{-1}\mathbf{X}(\mathbf{X}'\boldsymbol{\Sigma}_0^{-1}\mathbf{X})^{-1}\mathbf{h}} \bigg\}. \end{split}$$

LINEARIZATION REGION FOR THE BIAS OF ESTIMATORS

Let instead the linear model

$$\mathbf{Y} \sim N\left[(\mathbf{D}, \mathbf{X}) \begin{pmatrix} \mathbf{\Theta} \\ \boldsymbol{\beta} \end{pmatrix}, \boldsymbol{\Sigma}
ight],$$

a nonlinear model

$$\mathbf{Y} \sim N(\mathbf{f}(\boldsymbol{\Theta}, \boldsymbol{\beta}), \boldsymbol{\Sigma})$$

be considered and let $\mathbf{f}(\cdot,\cdot\cdot)$ can be expressed as

$$\begin{split} \mathbf{f}(\Theta, \boldsymbol{\beta}) &= \mathbf{f}(\Theta_0, \boldsymbol{\beta}_0) + \frac{\partial \mathbf{f}(\Theta_0, \boldsymbol{\beta}_0)}{\partial \Theta'} (\Theta - \Theta_0) + \frac{\partial \mathbf{f}(\Theta_0, \boldsymbol{\beta}_0)}{\partial \boldsymbol{\beta}'_0} (\boldsymbol{\beta} - \boldsymbol{\beta}_0) \\ &+ \frac{1}{2} \left(\begin{array}{c} \left(\begin{array}{c} \Theta - \Theta_0 \\ \boldsymbol{\beta} - \boldsymbol{\beta}_0 \end{array} \right)' \frac{\partial^2 f_i(\Theta_0, \boldsymbol{\beta}_0)}{\partial \left(\begin{array}{c} \Theta \\ \boldsymbol{\beta} \end{array} \right) \partial \left(\Theta', \boldsymbol{\beta}' \right)} \left(\begin{array}{c} \Theta - \Theta_0 \\ \boldsymbol{\beta} - \boldsymbol{\beta}_0 \end{array} \right) \\ &\vdots \end{array} \right) \\ &= \mathbf{f}_0 + \mathbf{D}\delta\Theta + \mathbf{X}\delta\boldsymbol{\beta} + \frac{1}{2}\boldsymbol{\kappa}(\delta\Theta, \delta\boldsymbol{\beta}), \\ &\delta\Theta = \Theta - \Theta_0, \quad \delta\boldsymbol{\beta} = \boldsymbol{\beta} - \boldsymbol{\beta}_0, \end{split}$$

with a sufficiently high accuracy. Then

$$\mathbf{b} = E(\widehat{\boldsymbol{\beta}}) - \delta\boldsymbol{\beta}$$

= $E(\widehat{\boldsymbol{\beta}}) - \boldsymbol{\beta} = \frac{1}{2} [\mathbf{X}'(\boldsymbol{\Sigma} + \mathbf{DWD}')^{-1}\mathbf{X}]^{-1}\mathbf{X}'(\boldsymbol{\Sigma} + \mathbf{DWD}')^{-1}\boldsymbol{\kappa}(\delta\boldsymbol{\Theta}, \delta\boldsymbol{\beta}).$

Let

$$C_{b}(\boldsymbol{\Theta}_{0},\boldsymbol{\beta}_{0}) = \sup \left\{ \frac{\sqrt{\mathbf{b}'\mathbf{X}'(\boldsymbol{\Sigma} + \mathbf{DWD'})^{-1}\mathbf{X}\mathbf{b}}}{(\delta\boldsymbol{\Theta}',\delta\boldsymbol{\beta}')\mathbf{U}^{-1}\begin{pmatrix}\delta\boldsymbol{\Theta}\\\delta\boldsymbol{\beta}\end{pmatrix}} : \begin{pmatrix}\delta\boldsymbol{\Theta}\\\delta\boldsymbol{\beta}\end{pmatrix} \in R^{l+k} \right\},$$

and at the same time

$$\begin{split} \mathbf{U} &= \left(\begin{array}{cc} \boxed{\mathbf{aa}}, & \boxed{\mathbf{ab}} \\ \boxed{\mathbf{ba}}, & \boxed{\mathbf{bb}} \end{array} \right), \\ \hline \mathbf{aa} &= \mathbf{W}, \\ \hline \mathbf{ab} &= -\mathbf{WD}'(\mathbf{\Sigma} + \mathbf{DWD}')^{-1}\mathbf{X}[\mathbf{X}'(\mathbf{\Sigma} + \mathbf{DWD}')^{-1}\mathbf{X}]^{-1} = \boxed{\mathbf{ba}}', \\ \hline \mathbf{bb} &= [\mathbf{X}'(\mathbf{\Sigma} + \mathbf{DWD}')^{-1}\mathbf{X}]^{-1}. \end{split}$$

In this case the linearization region for the bias of the estimator of the parameter β is

$$\mathcal{L}_{b} = \left\{ \begin{pmatrix} \delta \Theta \\ \delta \beta \end{pmatrix} : (\delta \Theta', \delta \beta') \mathbf{U}^{-1} \begin{pmatrix} \delta \Theta \\ \delta \beta \end{pmatrix} \leq \frac{\varepsilon}{C_{b}(\Theta_{0}, \beta_{0})} \right\}$$

and it is valid that

$$\left(\begin{array}{c} \delta \mathbf{\Theta} \\ \delta \boldsymbol{\beta} \end{array}\right) \in \mathcal{L}_b \Rightarrow \sqrt{\mathbf{b}' \mathbf{X}' (\mathbf{\Sigma} + \mathbf{D} \mathbf{W} \mathbf{D}')^{-1} \mathbf{X} \mathbf{b}} \leq \varepsilon.$$

Let

$$C_{1,\sigma^{2}}^{(int)} = \sup\left\{\frac{\sqrt{\boldsymbol{\kappa}'(\delta\boldsymbol{\Theta},\delta\boldsymbol{\beta})\left(\mathbf{M}_{(D,X)}\mathbf{V}\mathbf{M}_{(D,X)}\right)^{+}\boldsymbol{\kappa}(\delta\boldsymbol{\Theta},\delta\boldsymbol{\beta})}}{\delta\boldsymbol{\Theta}',\delta\boldsymbol{\beta}')\mathbf{U}^{-1}\left(\begin{array}{c}\delta\boldsymbol{\Theta}\\\delta\boldsymbol{\beta}\end{array}\right)} : \left(\begin{array}{c}\delta\boldsymbol{\Theta}\\\delta\boldsymbol{\beta}\end{array}\right) \in R^{l+k}\right\}.$$

In the case of normality the linearization region for the bias of the estimator $\hat{\sigma}_1^2$ is

$$\mathcal{L}_{1,\sigma^2} = \left\{ \left(\begin{array}{c} \delta \mathbf{\Theta} \\ \delta \mathbf{\beta} \end{array} \right) : (\delta \mathbf{\Theta}', \delta \mathbf{\beta}') \mathbf{U}^{-1} \left(\begin{array}{c} \delta \mathbf{\Theta} \\ \delta \mathbf{\beta} \end{array} \right) \le \frac{\sqrt{8[n - r(\mathbf{D}, \mathbf{X})]}}{C_{1,\sigma^2}^{int}} \right\}$$

and it is valid that

$$\begin{pmatrix} \delta \boldsymbol{\Theta} \\ \delta \boldsymbol{\beta} \end{pmatrix} \in \mathcal{L}_{1,\sigma^2} \Rightarrow \left| \sqrt{E(\hat{\sigma}_1^2)} - \sigma \right| \leq \varepsilon \sigma.$$

 \mathbf{Let}

$$C_{2,\sigma^2}^{(int)} = \sup\left\{\frac{\sqrt{\boldsymbol{\kappa}'(\delta\boldsymbol{\Theta},\delta\boldsymbol{\beta})(\mathbf{M}_X\boldsymbol{\Sigma}_0\mathbf{M}_X)^+\mathbf{V}(\mathbf{M}_X\boldsymbol{\Sigma}_0\mathbf{M}_X)^+\boldsymbol{\kappa}(\delta\boldsymbol{\Theta},\delta\boldsymbol{\beta})}}{\delta\boldsymbol{\Theta}',\delta\boldsymbol{\beta}')\mathbf{U}^{-1}\begin{pmatrix}\delta\boldsymbol{\Theta}\\\delta\boldsymbol{\beta}\end{pmatrix}}: \begin{pmatrix}\delta\boldsymbol{\Theta}\\\delta\boldsymbol{\beta}\end{pmatrix} \in R^{l+k}\right\}.$$

The linearization region for the bias of the estimator $\hat{\sigma}_2^2$ is

$$\mathcal{L}_{2,\sigma^{2}} = \left\{ \begin{pmatrix} \delta \Theta \\ \delta \beta \end{pmatrix} : \\ (\delta \Theta', \delta \beta') \mathbf{U}^{-1} \begin{pmatrix} \delta \Theta \\ \delta \beta \end{pmatrix} \leq \frac{\sigma}{C_{2,\sigma^{2}}^{(int)}} \sqrt{2\varepsilon \mathrm{Tr}[\mathbf{V}(\mathbf{M}_{X} \Sigma_{0} \mathbf{M}_{X})^{+} \mathbf{V}(\mathbf{M}_{X} \Sigma_{0} \mathbf{M}_{X})^{+}]} \right\} \\ \begin{pmatrix} \delta \Theta \\ \delta \beta \end{pmatrix} \in \mathcal{L}_{2,\sigma^{2}} \Rightarrow \left| \sqrt{E(\widehat{\sigma}_{2}^{2})} - \sigma \right| \leq \varepsilon \sigma.$$

NUMERICAL EXAMPLE

Let, in the plane, four points A_1 , A_2 , A_3 , A_4 be given by their coordinates, i.e. $A_i \begin{pmatrix} \Theta_{2i-1} \\ \Theta_{2i} \end{pmatrix}$, i = 1, 2, 3, 4,

$$A_{1}\left(\begin{array}{c}201.31m\\210.80m\end{array}\right), \ A_{2}\left(\begin{array}{c}406.73m\\863.45m\end{array}\right), \ A_{3}\left(\begin{array}{c}1050.47m\\216.66m\end{array}\right), \ A_{4}\left(\begin{array}{c}630.17m\\28.29m\end{array}\right).$$

The coordinates are estimated and their estimator is

$$\widehat{\boldsymbol{\Theta}} = \begin{pmatrix} \widehat{\Theta}_1 \\ \vdots \\ \widehat{\Theta}_8 \end{pmatrix} \sim N_8(\boldsymbol{\Theta}, \mathbf{W}), \quad \mathbf{W} = (0.1m)^2 \mathbf{I}_8.$$

Coordinates $\begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$ of a point P must be estimated by measured distances d_i

$$d_i = E(Y_i) = \sqrt{(\Theta_{2i-1} - \beta_1)^2 + (\Theta_{2i} - \beta_2)^2}, \ i = 1, \dots, 4,$$

where the approximate coordinates are

$$P\left(\begin{array}{c} 503.1m\\ 431.9m\end{array}\right),$$
$$\mathbf{Y} \sim N_4 \left[\left(\begin{array}{c} d_1\\ \vdots\\ d_4 \end{array}\right), (0.01m)^2 \mathbf{I}_4 \right].$$

The linearized models of this measurement are

$$\mathbf{Y} - \mathbf{f}_0 \sim N_4 \left[(\mathbf{D}, \mathbf{X}) \begin{pmatrix} \delta \mathbf{\Theta} \\ \delta \mathbf{\beta} \end{pmatrix}, (0.01m)^2 \mathbf{I}_4 \right]$$

and

$$\mathbf{Y} - \mathbf{f}_0 - \mathbf{D}\widehat{\delta \boldsymbol{\Theta}} \sim N_4 [\mathbf{X}\delta\boldsymbol{\beta}, (0.01m)^2 \mathbf{I}_4 + \mathbf{D}(0.1m)^2 \mathbf{I}_8 \mathbf{D}'],$$

respectively.

Here

The estimator $\widehat{\sigma_1^2}$ does not exist, since $\mathbf{M}_{(D,X)} = \mathbf{0}$. The esimator $\widehat{\sigma_2^2}$ is

$$\begin{aligned} \widehat{\sigma_2^2} &= \frac{A-B}{\operatorname{Tr}[(\mathbf{M}_X \boldsymbol{\Sigma}_0 \mathbf{M}_X)^+ \mathbf{V}(\mathbf{M}_X \boldsymbol{\Sigma}_0 \mathbf{M}_X)^+ \mathbf{V}]}, \\ A &= (\mathbf{Y} - \mathbf{D}\widehat{\Theta})'(\mathbf{M}_X \boldsymbol{\Sigma}_0 \mathbf{M}_X)^+ \mathbf{V}(\mathbf{M}_X \boldsymbol{\Sigma}_0 \mathbf{M}_X)^+ (\mathbf{Y} - \mathbf{D}\widehat{\Theta}), \\ B &= \operatorname{Tr}[(\mathbf{M}_X \boldsymbol{\Sigma}_0 \mathbf{M}_X)^+ \mathbf{V}(\mathbf{M}_X \boldsymbol{\Sigma}_0 \mathbf{M}_X)^+ \mathbf{D} \mathbf{W} \mathbf{D}'], \end{aligned}$$

and its dispersion is

$$\begin{aligned} \operatorname{Var}_{\sigma_0^2}(\widehat{\sigma_2^2}) &= \frac{2\sigma_0^4}{\operatorname{Tr}[(\mathbf{M}_X \boldsymbol{\Sigma}_0 \mathbf{M}_X)^+ \mathbf{V}(\mathbf{M}_X \boldsymbol{\Sigma}_0 \mathbf{M}_X)^+ \mathbf{V}]} = 1.020 \ 01 \times 10^{-4}. \end{aligned}$$

The estimator $\widehat{\sigma_3^2}$ is
 $\widehat{\sigma_3^2} &= (\mathbf{Y} - \mathbf{D}\widehat{\Theta})'(\mathbf{M}_X \boldsymbol{\Sigma}_0 \mathbf{M}_X)^+ (\lambda_1 \mathbf{V} + \lambda_2 \mathbf{DWD}')(\mathbf{M}_X \boldsymbol{\Sigma}_0 \mathbf{M}_X)^+ (\mathbf{Y} - \mathbf{D}\widehat{\Theta}), \end{aligned}$

$$\operatorname{Var}_{\sigma_0^2}(\widehat{\sigma_3^2}) = 2((1,0)\mathbf{S}_{V,DWD'}^{-1} \begin{pmatrix} 1\\0 \end{pmatrix} = 1.030 \ 05 \times 10^{-4},$$

where

$$\begin{split} \mathbf{S}_{V,DWD'} &= \begin{pmatrix} \boxed{\mathbf{aa}}, & \boxed{\mathbf{ab}} \\ \boxed{\mathbf{ba}}, & \boxed{\mathbf{bb}} \end{pmatrix}, \\ \mathbf{aa} &= & \mathrm{Tr}[\mathbf{V}(\mathbf{M}_X \boldsymbol{\Sigma}_0 \mathbf{M}_X)^+ \mathbf{V}(\mathbf{M}_X \boldsymbol{\Sigma}_0 \mathbf{M}_X)^+], \\ \mathbf{ab} &= & \mathrm{Tr}[\mathbf{V}(\mathbf{M}_X \boldsymbol{\Sigma}_0 \mathbf{M}_X)^+ \mathbf{DWD'}(\mathbf{M}_X \boldsymbol{\Sigma}_0 \mathbf{M}_X)^+] = \boxed{\mathbf{ba}} \\ \mathbf{bb} &= & \mathrm{Tr}[\mathbf{DWD'}(\mathbf{M}_X \boldsymbol{\Sigma}_0 \mathbf{M}_X)^+ \mathbf{DWD'}(\mathbf{M}_X \boldsymbol{\Sigma}_0 \mathbf{M}_X)^+]. \end{split}$$

The estimator $\widehat{\sigma_4^2}$ is

$$\widehat{\sigma_4^2} = \frac{(\mathbf{Y} - \mathbf{D}\widehat{\Theta})'(\mathbf{M}_X \mathbf{V} \mathbf{M}_X)^+ (\mathbf{Y} - \mathbf{D}\widehat{\Theta}) - \mathrm{Tr}[(\mathbf{M}_X \mathbf{V} \mathbf{M}_X)^+ \mathbf{D} \mathbf{W} \mathbf{D}']}{n - r(\mathbf{X})}$$

$$\operatorname{Var}(\sigma_4^2) = \frac{2\sigma^4}{n - r(\mathbf{X})} + \frac{4\sigma^2 \operatorname{Tr}[(\mathbf{M}_X \mathbf{V} \mathbf{M}_X)^+ \mathbf{D} \mathbf{W} \mathbf{D}' (\mathbf{M}_X \mathbf{V} \mathbf{M}_X)^+ \mathbf{V}]}{[n - r(\mathbf{X})]^2} + \frac{2\operatorname{Tr}[\mathbf{D} \mathbf{W} \mathbf{D}' (\mathbf{M}_X \mathbf{V} \mathbf{M}_X)^+ \mathbf{D} \mathbf{W} \mathbf{D}' (\mathbf{M}_X \mathbf{V} \mathbf{M}_X)^+]}{[n - r(\mathbf{X})]^2} = 1.020 \ 01 \times 10^{-4}.$$

The accuracy of different estimators of σ^2 is almost the same, even it is not sufficiently good. For example in the case of $\hat{\sigma}^2$ it is approximately valid that

$$\frac{\sqrt{\operatorname{Var}(\sqrt{\hat{\sigma}^2})}}{\sigma} = \sqrt{\left(\frac{1}{2\sqrt{\sigma^2}}\right)^2 \operatorname{Var}(\hat{\sigma}_2^2)} = \frac{1}{2 \times 10^{-2}} \sqrt{1.020 \ 01 \times 10^{-4}} = 0.505.$$

Thus the relative standard deviation is 50.5% what is rather large number. However nothing better can be expected because of the poor precision of the first stage measurement (W).

Insensitivity regions Let

$$W_h = \mathbf{h}' (\mathbf{X}' \boldsymbol{\Sigma}_0^{-1} \mathbf{X})^{-1} \mathbf{X}' \boldsymbol{\Sigma}_0^{-1} \mathbf{V} (\mathbf{M}_X \boldsymbol{\Sigma}_0^{-1} \mathbf{M}_X)^+ \mathbf{V} \boldsymbol{\Sigma}_0^{-1} \mathbf{X} (\mathbf{X}' \boldsymbol{\Sigma}_0^{-1} \mathbf{X})^{-1} \mathbf{h}.$$

If h = (1,0)', then $W_{(1,0)} = 0$ and also for $h = (0,1)' W_{(0,1)} = 0$.

Thus the estimators of β_1 and β_2 are not sensitive on the small changes of the value σ^2 .

Linearization regions

$$\begin{split} \mathbf{U} &= \left(\begin{bmatrix} \mathbf{aa} \\ \mathbf{ba} \end{bmatrix}, \begin{bmatrix} \mathbf{ab} \\ \mathbf{bb} \end{bmatrix} \right), \\ \mathbf{aa} &= \mathbf{W} = (0.1)^{2} \mathbf{I}_{8}, \\ \mathbf{ab} &= -\mathbf{W} \mathbf{D}' (\mathbf{\Sigma} + \mathbf{D} \mathbf{W} \mathbf{D}')^{-1} \mathbf{X} [\mathbf{X}' (\mathbf{\Sigma} + \mathbf{D} \mathbf{W} \mathbf{D}')^{-1} \mathbf{X}]^{-1} \\ &= \begin{pmatrix} 0.004 \ 533, & 0.002 \ 734 \\ 0.003 \ 321, & 0.002 \ 003 \\ 0.000 \ 091, & -0.000 \ 893 \\ -0.000 \ 409, & 0.003 \ 998 \\ 0.005 \ 089, & -0.000 \ 664 \\ -0.002 \ 001, & 0.000 \ 261 \\ 0.000 \ 287, & -0.001 \ 177 \\ -0.000 \ 911, & 0.003 \ 738 \end{pmatrix}, \\ \mathbf{ba} &= -[\mathbf{X}' (\mathbf{\Sigma} + \mathbf{D} \mathbf{W} \mathbf{D}')^{-1} \mathbf{X}]^{-1} \mathbf{X}' (\mathbf{\Sigma} + \mathbf{D} \mathbf{W} \mathbf{D}')^{-1} \mathbf{D} \mathbf{W} = \mathbf{ab}', \\ \mathbf{bb} &= [\mathbf{X}' (\mathbf{\Sigma} + \mathbf{D} \mathbf{W} \mathbf{D}')^{-1} \mathbf{X}]^{-1} = \begin{pmatrix} 0.006 \ 319, & 0.000 \ 978 \\ 0.000 \ 978, & 0.004 \ 457 \end{pmatrix}, \\ \mathcal{C}_{b} (\mathbf{\Theta}^{(0)}, \boldsymbol{\beta}^{(0)}) &= \sup \begin{cases} \sqrt{\mathbf{b}' \mathbf{X}' (\mathbf{\Sigma} + \mathbf{D} \mathbf{W} \mathbf{D}')^{-1} \mathbf{X} \mathbf{b} \\ (\mathbf{\delta} \mathbf{\Theta}) \in R^{l+k} \end{cases}; \begin{pmatrix} \mathbf{\delta} \mathbf{\Theta} \\ \mathbf{\delta} \mathbf{\beta} \end{pmatrix} \in R^{l+k} \end{cases}$$

$$C_{b}(\boldsymbol{\Theta}^{(0)},\boldsymbol{\beta}^{(0)}) = \sup \left\{ \frac{\sqrt{\mathbf{b}'\mathbf{X}'(\boldsymbol{\Sigma} + \mathbf{DW}\mathbf{D}')^{-1}\mathbf{X}\mathbf{b}}}{(\delta\boldsymbol{\Theta}',\delta\boldsymbol{\beta}')\mathbf{U}^{-1}\begin{pmatrix}\boldsymbol{\delta}\boldsymbol{\Theta}\\\boldsymbol{\delta}\boldsymbol{\beta}\end{pmatrix}} : \begin{pmatrix}\boldsymbol{\delta}\boldsymbol{\Theta}\\\boldsymbol{\delta}\boldsymbol{\beta}\end{pmatrix} \in R^{l+k} \right\}$$
$$= 0.000 \ 119 \ 76.$$

If $\varepsilon = 0.1$, then

$$\mathcal{L}_{b} = \left\{ \begin{pmatrix} \delta \mathbf{\Theta} \\ \delta \mathbf{\beta} \end{pmatrix} : (\delta \mathbf{\Theta}', \delta \mathbf{\beta}') \mathbf{U} \begin{pmatrix} \delta \mathbf{\Theta} \\ \delta \mathbf{\beta} \end{pmatrix} \le \frac{\varepsilon}{C_{b}(\mathbf{\Theta}^{(0)}, \mathbf{\beta}^{(0)})} \right\}$$

is the ellipsoid with the semiaxes equal to

 $\begin{array}{ll} a_1 = 0.268m, & a_2 = 0.292m, & a_3 = 0.346m, & a_4 = 0.346m, & a_5 = 0.346m, \\ a_6 = 0.346m, & a_7 = 0.346m, & a_8 = 0.346m, & a_9 = 5.487m, & a_{10} = 6.530m. \end{array}$

$$C_{2,\sigma^2} = \sup \left\{ \frac{\sqrt{\kappa'(\mathbf{M}_X \boldsymbol{\Sigma}_0 \mathbf{M}_X)^+ \mathbf{V}(\mathbf{M}_X \boldsymbol{\Sigma}_0 \mathbf{M}_X)^+ \boldsymbol{\kappa}}}{(\delta \boldsymbol{\Theta}', \delta \boldsymbol{\beta}') \mathbf{U}^{-1} \begin{pmatrix} \delta \boldsymbol{\Theta} \\ \delta \boldsymbol{\beta} \end{pmatrix}} : \begin{pmatrix} \delta \boldsymbol{\Theta} \\ \delta \boldsymbol{\beta} \end{pmatrix} \in R^{l+k} \right\}$$

= -0.003 776.

If $\varepsilon = 0.1$, then

$$\mathcal{L}_{2,\sigma^{2}} = \left\{ \begin{pmatrix} \delta \Theta \\ \delta \beta \end{pmatrix} : (\delta \Theta', \delta \beta') \mathbf{U}^{-1} \begin{pmatrix} \delta \Theta \\ \delta \beta \end{pmatrix} \\ \leq \frac{\sigma}{C_{2,\sigma^{2}}} \sqrt{2\varepsilon \operatorname{Tr}[\mathbf{V}(\mathbf{M}_{X} \boldsymbol{\Sigma}_{0} \mathbf{M}_{X})^{+} \mathbf{V}(\mathbf{M}_{X} \boldsymbol{\Sigma}_{0} \mathbf{M}_{X})^{+}]} \right\}$$

is the ellipsoid with the semiaxes

 $\begin{array}{ll} a_1 = 1.504m, & a_2 = 1.642, & a_3 = 1.943m, & a_4 = 1.943m, & a_5 = 1.943m, \\ a_6 = 1.943m, & a_7 = 1.943m, & a_8 = 1.943m, & a_9 = 30.813m, & a_{10} = 36.668m. \end{array}$

The linearization regions \mathcal{L}_b and \mathcal{L}_{2,σ^2} are sufficiently large with respect to requirements of geodetical practice.

Reference

- [1] Guide to the Expression of Uncertainty in Measurement. International Organization for Standardization, 1993 (Switzerland).
- [2] Korbašová, M., Marek, J.: Connecting measurements in surveying and its problem. Proceedings of INGEO and FIG Regional Central and Eastern European Conference on Engineering Surveying, Bratislava, Slovakia, November 11–13, 2004.
- [3] Kubáček, L., Kubáčková, L., Volaufová, J.: Statistical Models with Linear Structure. Veda, Bratislava 1995.
- [4] Kubáček, L., Kubáčková, L.: Statistics and Metrology (in Czech). Palacký University Olomouc, Olomouc 2000.
- [5] Kubáček, L., Marek, J.: Partial optimum estimator in two stage regression model with constraints and a problem of equivalence. Math. Slovaca 55, 2005, 477–494.
- [6] Marek, J.: Estimation in connecting measurements. Acta Universitas Palackianae, Fac. rer. nat., Mathematica 42, 2003, 69–86.
- [7] Marek, J.: Estimation in connecting measurements with constraints of type II. Acta Universitas Palackianae, Fac. rer. nat., Mathematica 43, 2004, 119–131.
- [8] Marek, J., Fišerová, E.: Statistical analysis of geodetical measurements. In: ROBUST 2004, sborník 13. letní školy, Třešť, 7.–11. 6. 2004, JČMF Praha, 2004, 253–260.
- [9] Rao, C. R., Mitra, S. K.: Generalized Inverse of Matrices and Its Applications. John Wiley & Sons, New York–London– Sydney–Toronto, 1971.