

Streamlining the Applied Mathematics Studies at Faculty of Science of Palacký University in Olomouc CZ.1.07/2.2.00/15.0243

INVESTMENTS IN EDUCATION DEVELOPMENT

International Conference Olomoucian Days of Applied Mathematics

ODAM 2011

Department of Mathematical analysis and Applications of Mathematics Faculty of Science Palacký University Olomouc

INFORMATION MEASURE FOR VAGUE SYMBOLS

Milan Mareš ÚTIA AV ČR, Prague

Classical (probabilistic) information measure

Information source (probabilistic) (A, p) A – alphabet, a∈A – symbol, p – probability distribution

Information, transmitted by symbol $a \in A$ is $I_p(a) = \log_2(1/p(a)) = -\log_2(p(a))$.

C. Shannon and V. Weaver – 1948.

Probabilistic Entropy - uncertainty characteristics of the entire source

Entropy (probabilistic) of the information source (A, p) is the mean value of the information measures $I_p(a)$. $H(A,p) = \sum_{a \in A} p(a)$. $I_p(a)$ $= -\sum_{a \in A} p(a)$. $\log_2(p(a))$

Note the "direction" of the concepts development: From information of individual symbol to the "information" of entire source

Fuzzy Source

The Fuzzy information source is a pair (A, μ) A – alphabet, μ – membership function over A .

Note that fuzzy information source is a fuzzy subset of the alphabet.

Hence – the information measure of the entire fuzzy source can be interpreted as a measure of "fuzziness" of a fuzzy set.

Naturally, the uncertainty of the fuzzy source (its fuzzy entropy) is in the focus of interest

 Several attempts to measure the **fuzzy entropy**.
 A. De Luca and S. Termini (1972)
 H_{LT} (A,µ) = -K.∑_{a∈A} µ(a). log₂ (µ(a)).

 A. Kolesárová and D. Vivona (2001)
 H_{KV} (A,µ) = -K.∑_{a∈A} [µ(a). log₂ (µ(a)))
 + (1-µ(a)). log₂ (1-µ(a))],

 where K is a positive constant.

Fuzzy information of particular symbol

The "individual" information transmitted by particular symbols is **not explicitly defined**. But, $H_{IT}(A,\mu)$ and $H_{KV}(A,\mu)$ implicitly include the pattern used in the probabilistic model. $I_{\mu}(a) = -\log_2(\mu(a)), a \in A$ (with some formal modifications). This approach is correct but not typically "fuzzy-like": This fuzzy information is additive and not monotonous. The logarithm is a "bribery" to probabilistic patterns.

What about some alternative approach ?

GENERAL PROPERTIES OF ANY FUZZY MEASURE OF INFORMATION $I_{\mu}(a), a \in A.$

1) if $a,b \in A$, $\mu(a) \ge \mu(b)$, then $I_{\mu}(b) \ge I_{\mu}(a)$, 2) $I_{\mu}(a) \in [0, 1]$, 3) $I_{\mu}(a) = 0 \iff \mu(a) = 1$.

Conditions (1), (2), (3) are general enough

Proposition. Fuzzy information measure
I_µ(a) = -log₂(µ(a))
fulfils conditions (1) and (3), and I_µ(a) ≥ 0. If
the alphabet A is finite then there exists K such
that (2) is fulfilled, as well.

An alternative concept of fuzzy information

The mapping $I_m : A \rightarrow R$ such that $I_m(a) = 1 - \mu(a)$ Is called monotonous fuzzy information **Proposition.** Monotonous fuzzy information measure fulfils conditions (1), (2) and (3).

Let us note that it is monotous in the sense of fuzzy set theoretical paradigma.

Extension of fuzzy information - generally

If we wish to extend an information measure I(.) from A to A^n , we would respect a general condition. For any $a = (a_1, a_2, \dots, a_n) \in A^n$, we demand (4) $I(a) \ge \max(I(a_1), I(a_2), \dots, I(a_n)).$ **Proposition.** Condition (4) is fulfilled also for the probabilistic information measure $I_{p}(a) = \log_{2}(1/p(a)) = -\log_{2}(p(a))$

Extension of monotonous fuzzy information

Let us extend the information measure $I_m(.)$ from A to A^n . First, we extend μ . Let $\mathbf{a} = (a_1, a_2, ..., a_n) \in A^n$. Then we put $\mu(\mathbf{a}) = \min(\mu(a_1), \mu(a_2), ..., \mu(a_n))$, and

$$I_m(oldsymbol{a})$$
 = 1 - $\mu(oldsymbol{a})$.

The above extension is consistent with the general condition

Proposition. The extension of monotonous fuzzy information $I_m(a) = 1 - \mu(a)$ fulfils condition (4).

Proposition. Also the fuzzy information $I_{\mu}(a) = -\log_2(\mu(a))$ fulfils condition (4) if we extend the membership function $\mu(a)$ due to $\mu(a) = \min(\mu(a_1), \mu(a_2), \dots, \mu(a_n))$

And it is all

Thanks for your patience