

Streamlining the Applied Mathematics Studies at Faculty of Science of Palacký University in Olomouc CZ.1.07/2.2.00/15.0243

INVESTMENTS IN EDUCATION DEVELOPMENT

International Conference Olomoucian Days of Applied Mathematics

ODAM 2011

Department of Mathematical analysis and Applications of Mathematics Faculty of Science Palacký University Olomouc

Vilém Novák

University of Ostrava in Ostrava Institute for Research and Applications of Fuzzy Modeling 30. dubna 22, 701 03 Ostrava 1, Czech Republic Vilem.Novak@osu.cz

ODAM, Olomouc, January 26-28, 2011

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

Outline

- 2 Fuzzy type theory
 - Motivation
 - Truth degrees
 - Fuzzy equality and functions
 - Types
 - Semantics
 - Syntax
 - Semantics
 - Axioms and inference rules
 - Few properties
- 3 FTT is highly expressive logic

・ロット (雪) (日) (日)

э

- Conclusions
- **References**

-Introduction

What is fuzzy logic

Fuzzy logic is

a special many-valued logic whose aim is to provide means that can be used for modeling of various aspects of the vagueness phenomenon via the use of degrees of truth

FL in narrow sense — FLn

- (a) propositional: traditional or evaluated syntax
- (b) predicate: traditional or evaluated syntax
- (c) *higher order* (fuzzy type theory)

Generalization of classical Simple Type Theory

・ ロ ト ・ 雪 ト ・ ヨ ト ・

-Introduction

What is fuzzy logic

Fuzzy logic is

a special many-valued logic whose aim is to provide means that can be used for modeling of various aspects of the vagueness phenomenon via the use of degrees of truth

FL in narrow sense — FLn

- (a) propositional: traditional or evaluated syntax
- (b) *predicate:* traditional or evaluated syntax
- (c) *higher order* (fuzzy type theory)

Generalization of classical Simple Type Theory

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

Higher-Order Fuzzy Logic		
Fuzzy type theory		
History		

- B. Russel (1903,1908)
- A. Church (1940), L. Henkin (1950, 1963), P. Andrews, P. Martin-Löf, W. Farmer

(i) Type theory as a (higher-order) logic(ii) Type theory as effective theoretical tool in computer science

L. Henkin (1963)

Higher-Order Fuzzy Logic		
Fuzzy type theory		
Motivation		
History		

- B. Russel (1903,1908)
- A. Church (1940), L. Henkin (1950, 1963), P. Andrews, P. Martin-Löf, W. Farmer
- (i) Type theory as a (higher-order) logic

 (ii) Type theory as effective theoretical tool in computer science

L. Henkin (1963)

Higher-Order Fuzzy Logic		
Fuzzy type theory		
History		

- B. Russel (1903,1908)
- A. Church (1940), L. Henkin (1950, 1963), P. Andrews, P. Martin-Löf, W. Farmer
- (i) Type theory as a (higher-order) logic
- (ii) Type theory as effective theoretical tool in **computer science**

L. Henkin (1963)

Higher-Order Fuzzy Logic		
Fuzzy type theory		
History		

- B. Russel (1903,1908)
- A. Church (1940), L. Henkin (1950, 1963), P. Andrews, P. Martin-Löf, W. Farmer
- (i) Type theory as a (higher-order) logic
- (ii) Type theory as effective theoretical tool in **computer science**

L. Henkin (1963)

- Motivation

- FTT provides a more transparent model of some deep manifestations of the vagueness phenomenon (including higher order vagueness)
- 2 Logical analysis of concepts and natural language expressions requires higher-order logic (TT). Replacing TT by FTT makes enables us to include vagueness in the developed models.
- 3 FLb (Fuzzy Logic in Broader Sense) develops a model of natural language semantics using FTT. We may thus bring a formal theory of commonsense reasoning closer to the human way of thinking.
- Foundations of the whole "fuzzy" mathematics require higher order fuzzy logic. The expressive power of FTT makes the task easier.

- Motivation

- FTT provides a more transparent model of some deep manifestations of the vagueness phenomenon (including higher order vagueness)
- Logical analysis of concepts and natural language expressions requires higher-order logic (TT). Replacing TT by FTT makes enables us to include vagueness in the developed models.
- 3 FLb (Fuzzy Logic in Broader Sense) develops a model of natural language semantics using FTT. We may thus bring a formal theory of commonsense reasoning closer to the human way of thinking.
- Foundations of the whole "fuzzy" mathematics require higher order fuzzy logic. The expressive power of FTT makes the task easier.

- Motivation

- FTT provides a more transparent model of some deep manifestations of the vagueness phenomenon (including higher order vagueness)
- Logical analysis of concepts and natural language expressions requires higher-order logic (TT). Replacing TT by FTT makes enables us to include vagueness in the developed models.
- FLb (Fuzzy Logic in Broader Sense) develops a model of natural language semantics using FTT. We may thus bring a formal theory of commonsense reasoning closer to the human way of thinking.
- Foundations of the whole "fuzzy" mathematics require higher order fuzzy logic. The expressive power of FTT makes the task easier.

- Motivation

- FTT provides a more transparent model of some deep manifestations of the vagueness phenomenon (including higher order vagueness)
- Logical analysis of concepts and natural language expressions requires higher-order logic (TT). Replacing TT by FTT makes enables us to include vagueness in the developed models.
- FLb (Fuzzy Logic in Broader Sense) develops a model of natural language semantics using FTT. We may thus bring a formal theory of commonsense reasoning closer to the human way of thinking.
- Foundations of the whole "fuzzy" mathematics require higher order fuzzy logic. The expressive power of FTT makes the task easier.

Fuzzy type theory

Motivation

Truth degrees

Fuzzy equality

Types

Semantics based on frame (hierarchical structure of sets)

Syntax based on λ -calculus

Fuzzy type theory

Motivation

Truth degrees

- Puzzy equality
- Types
- Semantics based on frame (hierarchical structure of sets)
- Syntax based on λ-calculus

Fuzzy type theory

Motivation

- Truth degrees
- Puzzy equality
- Types
- Semantics based on frame (hierarchical structure of sets)
- Syntax based on λ-calculus

Fuzzy type theory

- Motivation

- Truth degrees
- Puzzy equality
- Types
- Semantics based on frame (hierarchical structure of sets)
- Syntax based on λ -calculus

Fuzzy type theory

- Motivation

- Truth degrees
- Puzzy equality
- Types
- Semantics based on frame (hierarchical structure of sets)
- **(3)** Syntax based on λ -calculus

- Fuzzy type theory

└─ Truth degrees

Structure of truth degrees

Residuated lattice

$$\mathcal{L} = \langle \mathcal{L}, \lor, \land, \otimes, \rightarrow, \mathbf{0}, \mathbf{1} \rangle$$

(Integral, commutative, bounded, residuated lattice)

1
$$\mathcal{E} = \langle E, \lor, \land, \mathbf{0}, \mathbf{1} \rangle$$
 — lattice with **0**, **1**

- **2** \otimes is associative, commutative, $a \otimes \mathbf{1} = a$
- 3 adjunction: $a \otimes b \leq c$ iff $a \leq b \rightarrow c$ (algebraic formulation of modus ponens)

Fuzzy type theory

└─ Truth degrees

Essential kinds of algebras of truth degrees

(i) prelinearity
$$(a \rightarrow b) \lor (b \rightarrow a) = 1$$

(ii) divisibility $a \otimes (a \rightarrow b) = a \land b$
(iii) double negation $\neg \neg a = a$

- MTL-algebra prelinearity
- IMTL-algebra prelinearity + double negation
- BL-algebra prelinearity + divisibility
- *MV-algebra* prelinearity + divisibility+double negation

Fuzzy type theory

└─ Truth degrees

Essential kinds of algebras of truth degrees

(i) prelinearity
$$(a \rightarrow b) \lor (b \rightarrow a) = 1$$

(ii) divisibility $a \otimes (a \rightarrow b) = a \land b$
(iii) double negation $\neg \neg a = a$

MTL-algebra — prelinearity

- IMTL-algebra prelinearity + double negation
- BL-algebra prelinearity + divisibility
- *MV-algebra* prelinearity + divisibility+double negation

・ ロ ト ・ 雪 ト ・ ヨ ト ・

Fuzzy type theory

└─ Truth degrees

Essential kinds of algebras of truth degrees

(i) prelinearity
$$(a \rightarrow b) \lor (b \rightarrow a) = 1$$

(ii) divisibility $a \otimes (a \rightarrow b) = a \land b$
(iii) double negation $\neg \neg a = a$

- MTL-algebra prelinearity
- IMTL-algebra prelinearity + double negation
- BL-algebra prelinearity + divisibility
- *MV-algebra* prelinearity + divisibility+double negation

Fuzzy type theory

└─ Truth degrees

Essential kinds of algebras of truth degrees

(i) prelinearity
$$(a \rightarrow b) \lor (b \rightarrow a) = 1$$

(ii) divisibility $a \otimes (a \rightarrow b) = a \land b$
(iii) double negation $\neg \neg a = a$

- MTL-algebra prelinearity
- IMTL-algebra prelinearity + double negation
- BL-algebra prelinearity + divisibility
- *MV-algebra* prelinearity + divisibility+double negation

・ ロ ト ・ 雪 ト ・ ヨ ト ・

Fuzzy type theory

└─ Truth degrees

Essential kinds of algebras of truth degrees

(i) prelinearity
$$(a \rightarrow b) \lor (b \rightarrow a) = 1$$

(ii) divisibility $a \otimes (a \rightarrow b) = a \land b$
(iii) double negation $\neg \neg a = a$

- MTL-algebra prelinearity
- IMTL-algebra prelinearity + double negation
- BL-algebra prelinearity + divisibility
- MV-algebra prelinearity + divisibility+double negation

・ ロ ト ・ 雪 ト ・ ヨ ト ・

Fuzzy type theory

└─ Truth degrees

EQ-algebras — special algebras for FTT

EQ-algebra

Algebra

$$\mathcal{E} = \langle \boldsymbol{E}, \wedge, \otimes, \sim, \mathbf{1} \rangle$$

of type (2, 2, 2, 0)

Fuzzy equality is the main (basic) operation

Fuzzy type theory

Truth degrees

EQ-algebras

Definition (E1) $\langle E, \wedge \rangle$ is a \wedge -semilattice with the top element **1** (E2) $\langle E, \otimes, \mathbf{1} \rangle$ is a monoid \otimes is isotone w.r.t. < $(a \leq b \text{ iff } a \land b = a)$ (E3) *a* ~ *a* = **1** (reflexivity)

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

э

- Fuzzy type theory

Truth degrees

EQ-algebras

Definition

- (E1) $\langle E, \wedge \rangle$ is a \wedge -semilattice with the top element **1**
- (E2) $\langle E, \otimes, \mathbf{1} \rangle$ is a monoid \otimes is isotone w.r.t. \leq
- (E3) *a* ~ *a* = 1

(reflexivity)(substitution)(substitution) (reflexivity)(substitution) (reflexivity)(substitution) (reflexivity) (r

 $(a \leq b \text{ iff } a \land b = a)$

イロト 不良 とくほ とくほう 二日

(E4) $((a \land b) \sim c) \otimes (d \sim a) \leq c \sim (d \land b)$

(Leibniz rule of indiscernibility of identicals)

(E5) $(a \sim b) \otimes (c \sim d) \leq (a \sim c) \sim (b \sim d)$ (congruence)(E6) $(a \wedge b \wedge c) \sim a \leq (a \wedge b) \sim a$ (monotonicity)(E7) $a \otimes b \leq a \sim b$ (boundedness)

-Fuzzy type theory

└─ Truth degrees

EQ-algebras

Definition

- (E1) $\langle E, \wedge \rangle$ is a \wedge -semilattice with the top element **1**
- (E2) $\langle E, \otimes, \mathbf{1} \rangle$ is a monoid \otimes is isotone w.r.t. \leq
- (E3) $a \sim a = 1$

(E7) $a \otimes b < a \sim b$

- $(a \leq b \text{ iff } a \land b = a)$
 - (reflexivity)

(substitution)

(E4) $((a \land b) \sim c) \otimes (d \sim a) \leq c \sim (d \land b)$

(Leibniz rule of indiscernibility of identicals)

- (E5) $(a \sim b) \otimes (c \sim d) \leq (a \sim c) \sim (b \sim d)$ (congruence)
- (E6) $(a \wedge b \wedge c) \sim a \leq (a \wedge b) \sim a$

(monotonicity) (boundedness)

Fuzzy type theory

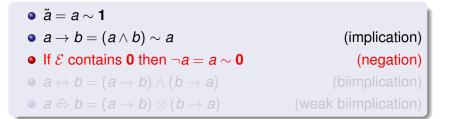
└─ Truth degrees

Fuzzy type theory

└─ Truth degrees

Fuzzy type theory

└─ Truth degrees



Fuzzy type theory

└─ Truth degrees



Fuzzy type theory

└─ Truth degrees

Theorem

(a)
$$a \sim b = b \sim a$$

(b) $(a \sim b) \otimes (b \sim c) \leq (a \sim c)$
(c) $(a \rightarrow b) \otimes (b \rightarrow c) \leq a \rightarrow c$
(d) $a \rightarrow b \leq (a \wedge c) \rightarrow b$

(symmetry)(transitivity) $(transitivity of <math>\rightarrow$) $(antitonicity of <math>\rightarrow$)

"Semi- adjunction"

If $a \leq b \rightarrow c$, then $a \otimes b \leq \tilde{c}$

Fuzzy type theory

└─ Truth degrees

Theorem

(a)
$$a \sim b = b \sim a$$

(b) $(a \sim b) \otimes (b \sim c) \leq (a \sim c)$
(c) $(a \rightarrow b) \otimes (b \rightarrow c) \leq a \rightarrow c$ (d)
(d) $a \rightarrow b \leq (a \wedge c) \rightarrow b$ (a)

(symmetry)(transitivity) $(transitivity of <math>\rightarrow$) antitonicity of \rightarrow)

"Semi- adjunction"

If $a \leq b \rightarrow c$, then $a \otimes b \leq \tilde{c}$

Fuzzy type theory

└─ Truth degrees

Special EQ-algebras

EQ-algebra is:

(i) separated if $a \sim b = 1$ iff a = b(ii) good if $a \sim 1 = a$ $\sup\{a \rightarrow b, b \rightarrow a\} = 1$

Fuzzy type theory

└─ Truth degrees

Special EQ-algebras

EQ-algebra is:

(i) separated if $a \sim b = 1$ iff a = b(ii) good if $a \sim \mathbf{1} = a$ $\sup\{a \rightarrow b, b \rightarrow a\} = 1$

Fuzzy type theory

└─ Truth degrees

Special EQ-algebras

EQ-algebra is:

(i) separated if $a \sim b = 1$ iff a = b

(ii) good if
$$a \sim \mathbf{1} = a$$

(iii) prelinear if for all $a, b \in E$

 $\sup\{a \rightarrow b, b \rightarrow a\} = 1$

Fuzzy type theory

└─ Truth degrees

Special EQ-algebras

EQ-algebra is:

- (i) separated if $a \sim b = 1$ iff a = b
- (ii) good if $a \sim \mathbf{1} = a$

(iii) prelinear if for all $a, b \in E$

 $\sup\{a \rightarrow b, b \rightarrow a\} = 1$

Fuzzy type theory

└─ Truth degrees

Special EQ-algebras

EQ-algebra is:

- (i) separated if $a \sim b = 1$ iff a = b
- (ii) good if $a \sim \mathbf{1} = a$

(iii) prelinear if for all $a, b \in E$

$$\sup\{a
ightarrow b, b
ightarrow a\} = 1$$

Fuzzy type theory

└─ Truth degrees

Special EQ-algebras

EQ-algebra is:

- (i) separated if $a \sim b = 1$ iff a = b
- (ii) good if $a \sim \mathbf{1} = a$

(iii) prelinear if for all $a, b \in E$

$$\sup\{a o b, b o a\} = 1$$

Fuzzy type theory

└─ Truth degrees

Special EQ-algebras

EQ-algebra is:

- (i) separated if $a \sim b = 1$ iff a = b
- (ii) good if $a \sim \mathbf{1} = a$

(iii) prelinear if for all $a, b \in E$

$$\mathsf{sup}\{a o b, b o a\} = \mathbf{1}$$

- Fuzzy type theory

└─ Truth degrees

Representation of prelinear EQ (EQ $_{\Delta}$)-algebras

Theorem (M. El Zekey)

Let \mathcal{E} be a good EQ-algebra. The following are equivalent:

(a) *E* is subdirectly embeddable into a product of linearly ordered good EQ-algebras.

(b) E satisfies

$$(a \rightarrow b) \lor (d \rightarrow (d \otimes (c \rightarrow ((b \rightarrow a) \otimes c)))) = 1$$

Fuzzy type theory

└─ Truth degrees

Examples of EQ-algebras

Each residuated lattice

$$\mathcal{L} = \langle \mathcal{L}, \lor, \land, \otimes,
ightarrow, \mathbf{0}, \mathbf{1}
angle$$

is a good residuated ℓ -EQ-algebra

$$\mathcal{E} = \langle \boldsymbol{E}, \wedge, \otimes, \sim, \mathbf{1} \rangle$$

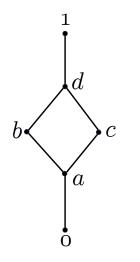
with fuzzy equality \sim identified with the <code>biresiduation</code>

$$a \leftrightarrow b = (a \rightarrow b) \land (b \rightarrow a)$$

Fuzzy type theory

Truth degrees

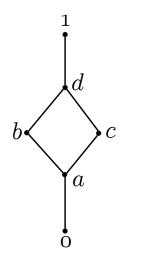
Examples of EQ-algebras — 6-element non-separated EQ-algebra



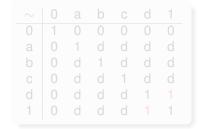
Fuzzy type theory

Truth degrees

Examples of EQ-algebras — 6-element non-separated EQ-algebra



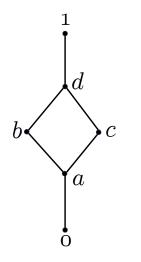
\otimes	0	а	b	с	d	1
0	0	0	0	0	0	0
а	0	0	0	0	0	а
b	0	0	а	а	а	b
с	0	0	а	0	а	С
d	0	0	а	а	а	d
1	0	0 0 0 0 0 a	b	С	d	1
_				-		



Fuzzy type theory

Truth degrees

Examples of EQ-algebras — 6-element non-separated EQ-algebra



\otimes	0	а	b	с	d	1
0	0	0	0	0	0	0
а	0	0	0	0	0	а
b	0	0	а	а	а	b
С	0	0	а	0	а	С
d	0	0	а	а	а	d
1	0	0 0 0 0 0 a	b	С	d	1
_		_	_	_	_	_

\sim	0	а	b	с	d	1	
0	1	0	0	0	0	0	
а	0	1	d	d	d	d	
b	0	d	1	d	d	d	
с	0	d	d	1	d	d	
d	0	d	d	d	1	1	
1	0	0 1 d d d	d	d	1	1	

Fuzzy type theory

Truth degrees

Examples of EQ-algebras — 6-element non-separated EQ-algebra

\rightarrow	0	а	b	с	d	1
0	1	1	1	1	1	1
а	0	1	1	1	1	1
b	0	1	1	1	1	1
С	0	1	1	1	1	1
d	0	d	d	d	1	1
1	0	a 1 1 1 d d	d	d	1	1

Not residuated:

$$0 = a \otimes d \leq 0$$
 but $a \not\leq d \rightarrow 0 = 0$

Higher-Order Fuzzy Logic		
Fuzzy type theory		
└─ Truth degrees		
Dolta operation		

In linearly ordered structure of truth values:

$$\Delta(a) = \begin{cases} \mathbf{1} & \text{if } a = \mathbf{1}, \\ \mathbf{0} & \text{otherwise.} \end{cases}$$

(determined algebraically in partially ordered structures)

All structures of truth values considered in FTT must contain the delta operation

・ロト ・ 日本 ・ 日本 ・ 日本

ъ

Fuzzy type theory

Fuzzy equality and functions

Fuzzy equality

Given a set M

$\doteq: M \times M \longrightarrow E$

(i) Reflexivity: [m ≗ m] = 1
(ii) Symmetry: [m ≗ m'] = [m' ≗ m]
(iii) Transitivity: [m ≗ m'] ⊗ [m' ≗ m''] ≤ [m ≗ m'']

Example

 $M = \mathbb{R}, \mathcal{E}$ is Łukasiewicz MV-algebra

$$[m \stackrel{\circ}{=} m'] = 0 \lor (1 - |m - m'|)$$

イロト 不良 とくほ とくほう 二日

Fuzzy type theory

└─ Fuzzy equality and functions

Fuzzy equality

Given a set M

$$\doteq: M \times M \longrightarrow E$$

(i) Reflexivity:
$$[m \stackrel{\circ}{=} m] = 1$$

(ii) Symmetry: $[m \stackrel{\circ}{=} m'] = [m' \stackrel{\circ}{=} m]$
(iii) Transitivity: $[m \stackrel{\circ}{=} m'] \otimes [m' \stackrel{\circ}{=} m''] \leq [m \stackrel{\circ}{=} m'']$

Example

 $M = \mathbb{R}, \mathcal{E}$ is Łukasiewicz MV-algebra

$$[m \stackrel{\circ}{=} m'] = 0 \lor (1 - |m - m'|)$$

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨ

Fuzzy type theory

Fuzzy equality and functions

Fuzzy equality

Given a set M

$$\doteq: M \times M \longrightarrow E$$

(i) Reflexivity:
$$[m \stackrel{\circ}{=} m] = \mathbf{1}$$

(ii) Symmetry: $[m \stackrel{\circ}{=} m'] = [m' \stackrel{\circ}{=} m]$
(iii) Transitivity: $[m \stackrel{\circ}{=} m'] \otimes [m' \stackrel{\circ}{=} m''] \leq [m \stackrel{\circ}{=} m'']$

Example

 $M = \mathbb{R}, \mathcal{E}$ is Łukasiewicz MV-algebra

$$[m \stackrel{\circ}{=} m'] = 0 \lor (1 - |m - m'|)$$

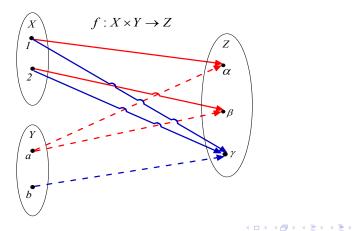
・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

-Fuzzy type theory

└─ Fuzzy equality and functions

Function of n variables can be expressed using functions of one variable

M. Schönfinkel, H. Curry, G. Frege (*currying*)

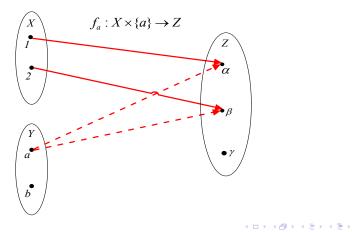


-Fuzzy type theory

└─ Fuzzy equality and functions

Function of n variables can be expressed using functions of one variable

M. Schönfinkel, H. Curry, G. Frege (*currying*)

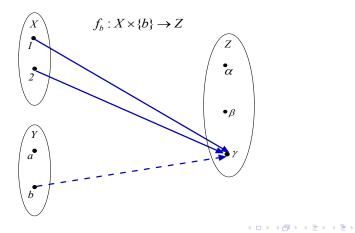


-Fuzzy type theory

└─ Fuzzy equality and functions

Function of n variables can be expressed using functions of one variable

M. Schönfinkel, H. Curry, G. Frege (*currying*)



Fuzzy type theory

Types

Types are indexes of specific sets

Elementary types:

(i) o (truth values) — $M_o = E$

(ii) ϵ (objects) — M_{ϵ}

Compound types:

Functions $f: M_{\alpha} \longrightarrow M_{\beta}$ form a subset $M_{\beta\alpha} \subseteq M_{\beta}^{M_{\alpha}}$

Types

(i) $\epsilon, o \in Types$, (ii) If $\alpha, \beta \in Types$ then $(\alpha\beta) \in Types$.

Alternative notation

Write $\alpha \rightarrow \beta$ *instead of* $\beta \alpha$

Fuzzy type theory

Types

Types are indexes of specific sets

Elementary types:

- (i) o (truth values) $M_o = E$
- (ii) ϵ (objects) M_{ϵ}

Compound types:

Functions $f: M_{\alpha} \longrightarrow M_{\beta}$ form a subset $M_{\beta\alpha} \subseteq M_{\beta}^{M_{\alpha}}$

Types

(i) $\epsilon, o \in Types$, (ii) If $\alpha, \beta \in Types$ then $(\alpha\beta) \in Types$.

Alternative notation

Write $\alpha \rightarrow \beta$ *instead of* $\beta \alpha$

	lig	her-	Ord	er	Fuzzy	/ Logic
--	-----	------	-----	----	-------	---------

- Fuzzy type theory

└─ Types

Types are indexes of specific sets

Elementary types:

- (i) o (truth values) $M_o = E$
- (ii) ϵ (objects) M_{ϵ}

Compound types:

Functions $f: M_{\alpha} \longrightarrow M_{\beta}$ form a subset $M_{\beta\alpha} \subseteq M_{\beta}^{M_{\alpha}}$

Types

(i) $\epsilon, o \in Types$, (ii) If $\alpha, \beta \in Types$ then $(\alpha\beta) \in Types$.

Alternative notation

Write $\alpha \rightarrow \beta$ *instead of* $\beta \alpha$

э

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Fuzzy type theory

Types

Types are indexes of specific sets

Elementary types:

- (i) o (truth values) $M_o = E$
- (ii) ϵ (objects) M_{ϵ}

Compound types:

Functions $f: M_{\alpha} \longrightarrow M_{\beta}$ form a subset $M_{\beta\alpha} \subseteq M_{\beta}^{M_{\alpha}}$

イロト 不良 とくほ とくほう 二日

Types

(i) $\epsilon, o \in Types$,

(ii) If $\alpha, \beta \in Types$ then $(\alpha\beta) \in Types$.

Alternative notation

Write $\alpha \rightarrow \beta$ *instead of* $\beta \alpha$

Higher-Order Fuzzy Logic	Hig	her-C	Order	Fuzzy	Logic
--------------------------	-----	-------	-------	-------	-------

Fuzzy type theory

└─ Types

Types are indexes of specific sets

Elementary types:

- (i) o (truth values) $M_o = E$
- (ii) ϵ (objects) M_{ϵ}

Compound types:

Functions $f: M_{\alpha} \longrightarrow M_{\beta}$ form a subset $M_{\beta\alpha} \subseteq M_{\beta}^{M_{\alpha}}$

(日)

Types

(i) $\epsilon, o \in Types$,

(ii) If $\alpha, \beta \in Types$ then $(\alpha\beta) \in Types$.

Alternative notation

Write $\alpha \rightarrow \beta$ instead of $\beta \alpha$

Fuzzy type theory

-Semantics

General frame

$$\mathcal{M} = \langle \{ M_{\alpha}, \mathring{=}_{\alpha} | \alpha \in Types \}, \mathcal{E}_{\Delta} \rangle$$

 $(M_{o} = \{a \mid a \in L\}, \sim) \qquad (M_{\epsilon} = \{m \mid \varphi(m)\}, =_{\epsilon})$ $(M_{oo} \subseteq \{g_{oo} \mid g_{oo} : M_{o} \longrightarrow M_{o}\}, =_{oo})$ $(M_{o\epsilon} \subseteq \{f_{o\epsilon} \mid f_{o\epsilon} : M_{\epsilon} \longrightarrow M_{o}\}, =_{o\epsilon})$ $(M_{\epsilon\epsilon} \subseteq \{f_{\epsilon\epsilon} \mid f_{\epsilon\epsilon} : M_{\epsilon} \longrightarrow M_{\epsilon}\}, =_{\epsilon\epsilon}), \dots$

 $(M_{\beta\alpha} \subseteq \{f_{\beta\alpha} \mid f_{\beta\alpha} : M_{\alpha} \longrightarrow M_{\beta}\}, =_{\beta\alpha})$

イロト 不良 とくほ とくほう 二日

Fuzzy type theory

Semantics

General frame

$$\mathcal{M} = \langle \{ M_{\alpha}, \mathring{=}_{\alpha} | \ \alpha \in Types \}, \mathcal{E}_{\Delta} \rangle$$

$$(M_{o} = \{a \mid a \in L\}, \sim) \qquad (M_{\epsilon} = \{m \mid \varphi(m)\}, =_{\epsilon})$$
$$(M_{oo} \subseteq \{g_{oo} \mid g_{oo} : M_{o} \longrightarrow M_{o}\}, =_{oo})$$
$$(M_{o\epsilon} \subseteq \{f_{o\epsilon} \mid f_{o\epsilon} : M_{\epsilon} \longrightarrow M_{o}\}, =_{o\epsilon})$$
$$(M_{\epsilon\epsilon} \subseteq \{f_{\epsilon\epsilon} \mid f_{\epsilon\epsilon} : M_{\epsilon} \longrightarrow M_{\epsilon}\}, =_{\epsilon\epsilon}), \dots$$

 $(\mathbf{M}_{\beta\alpha} \subseteq \{f_{\beta\alpha} \mid f_{\beta\alpha} : \mathbf{M}_{\alpha} \longrightarrow \mathbf{M}_{\beta}\}, =_{\beta\alpha})$

(日)

Fuzzy type theory

Semantics

General frame

$$\mathcal{M} = \langle \{ M_{\alpha}, \mathring{=}_{\alpha} | \ \alpha \in Types \}, \mathcal{E}_{\Delta} \rangle$$

$$(M_{o} = \{a \mid a \in L\}, \sim) \qquad (M_{\epsilon} = \{m \mid \varphi(m)\}, =_{\epsilon})$$

$$(M_{oo} \subseteq \{g_{oo} \mid g_{oo} : M_{o} \longrightarrow M_{o}\}, =_{oo})$$

$$(M_{o\epsilon} \subseteq \{f_{o\epsilon} \mid f_{o\epsilon} : M_{\epsilon} \longrightarrow M_{o}\}, =_{o\epsilon})$$

$$(M_{\epsilon\epsilon} \subseteq \{f_{\epsilon\epsilon} \mid f_{\epsilon\epsilon} : M_{\epsilon} \longrightarrow M_{\epsilon}\}, =_{\epsilon\epsilon}), \dots$$

$$\vdots$$

$$(M_{\beta\alpha} \subseteq \{f_{\beta\alpha} \mid f_{\beta\alpha} : M_{\alpha} \longrightarrow M_{\beta}\}, =_{\beta\alpha})$$

:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの

Higher-Order Fuzzy Logic		
- Fuzzy type theory		
Syntax		
Formulas		

Formulas

- (i) Variables x_{α} and constants c_{α} are formulas of type α .
- (ii) If $B_{\beta\alpha}$ and A_{α} are formulas then $(B_{\beta\alpha}A_{\alpha})$ is a formula of type β .
- (iii) If A_{β} is a formula and $x_{\alpha} \in J$ a variable then $\lambda x_{\alpha} A_{\beta}$ is a formula of type $\beta \alpha$.

・ロット (雪) (日) (日)

Formulas Ao are propositions

Alternative notation

-) Write A : lpha instead of A $_lpha$
- Formulas are also called lambda terms

Higher-Order Fuzzy Logic		
Fuzzy type theory		
Syntax		
Formulas		

Formulas

- (i) Variables x_{α} and constants c_{α} are formulas of type α .
- (ii) If $B_{\beta\alpha}$ and A_{α} are formulas then $(B_{\beta\alpha}A_{\alpha})$ is a formula of type β .
- (iii) If A_{β} is a formula and $x_{\alpha} \in J$ a variable then $\lambda x_{\alpha} A_{\beta}$ is a formula of type $\beta \alpha$.

(日)

Formulas Ao are propositions

Alternative notation

- Write $A : \alpha$ instead of A_{α}
- Pormulas are also called lambda terms

- Fuzzy type theory

Syntax

Special formula (constant)

$$\mathbf{E}_{(o\alpha)\alpha}$$

Definition of fuzzy equality

$$\equiv := \lambda x_{\alpha} \lambda y_{\alpha} (\mathbf{E}_{(o\alpha)\alpha} y_{\alpha}) x_{\alpha}.$$

 ${\it A}_{lpha}\equiv{\it B}_{lpha}$ is a formula of type o

All connectives in FTT are formulas

Higher-Order	Fuzzy	Logic	

- Fuzzy type theory

Syntax

Special formula (constant)

$$\mathbf{E}_{(o\alpha)\alpha}$$

Definition of fuzzy equality

$$\equiv := \lambda x_{\alpha} \lambda y_{\alpha} (\mathbf{E}_{(o\alpha)\alpha} y_{\alpha}) x_{\alpha}.$$

 ${\it A}_{lpha}\equiv {\it B}_{lpha}$ is a formula of type o

All connectives in FTT are formulas

-Fuzzy type theory

-Semantics

Truth values in FTT

- **(**) a complete linearly ordered $IMTL_{\Delta}$ -algebra
- ② linearly ordered Łukasiewicz∆-algebra
- Iinearly ordered BL_△-algebra
- Inearly ordered EQ $_{\Delta}$ -algebra or IEQ $_{\Delta}$ -algebra

-Fuzzy type theory

-Semantics

Truth values in FTT

- In a complete linearly ordered IMTL_△-algebra
- Inearly ordered Łukasiewicz_△-algebra
- Iinearly ordered BL_{Δ} -algebra
- Inearly ordered EQ $_{\Delta}$ -algebra or IEQ $_{\Delta}$ -algebra

-Fuzzy type theory

-Semantics

Truth values in FTT

- In a complete linearly ordered IMTL_△-algebra
- Iinearly ordered Łukasiewicz_△-algebra
- **3** linearly ordered BL_{Δ} -algebra
 - Iinearly ordered EQ_{Δ} -algebra or IEQ_{Δ} -algebra

- Fuzzy type theory

-Semantics

Truth values in FTT

- In a complete linearly ordered IMTL_△-algebra
- Iinearly ordered Łukasiewicz_△-algebra
- Inearly ordered BL_△-algebra
- () linearly ordered EQ_{Δ} -algebra or IEQ_{Δ} -algebra

- Fuzzy type theory

Semantics

Interpretation of formulas

$$\mathcal{M}^{\mathcal{E}}(\mathcal{A}_{etalpha})\in \mathcal{M}_{etalpha}$$

・ ロ ト ・ 雪 ト ・ 目 ト ・

Example (interpretation)

$$\begin{split} \mathcal{M}^{\mathcal{E}}(A_o) &\in L \text{ is a truth value} \\ \mathcal{M}^{\mathcal{E}}(A_{o\epsilon}) \text{ is fuzzy set in } M_{\epsilon} \\ \mathcal{M}^{\mathcal{E}}(A_{(o\epsilon)\epsilon}) \text{ is fuzzy relation on } M_{\epsilon} \\ \mathcal{M}^{\mathcal{E}}(A_{(oo)\epsilon}) \text{ is fuzzy set of type 2} \\ \mathcal{M}^{\mathcal{E}}(A_{\epsilon\epsilon}) \text{ is function on objects} \end{split}$$

Fuzzy type theory

Axioms and inference rules

Logical axioms of IMTL-FTT (IMTL_△algebra)

Fundamental axioms

(FT1)
$$\Delta(x_{\alpha} \equiv y_{\alpha}) \Rightarrow (f_{\beta\alpha} x_{\alpha} \equiv f_{\beta\alpha} y_{\alpha})$$

$$\begin{array}{l} (\mathsf{FT2}_1) \ (\forall x_\alpha)(f_{\beta\alpha} \, x_\alpha \equiv g_{\beta\alpha} \, x_\alpha) \Rightarrow (f_{\beta\alpha} \equiv g_{\beta\alpha}) \\ (\mathsf{FT2}_2) \ (f_{\beta\alpha} \equiv g_{\beta\alpha}) \Rightarrow (f_{\beta\alpha} \, x_\alpha \equiv g_{\beta\alpha} \, x_\alpha) \\ (\mathsf{FT3}) \ (\lambda x_\alpha B_\beta) A_\alpha \equiv C_\beta \end{array}$$

where C_{β} is obtained from B_{β} by replacing all free occurrences of x_{α} in it by A_{α} (*lambda conversion*)

・ロト ・ 聞 ト ・ 国 ト ・ 国 ト ・ 国

(FT4)
$$(x_{\epsilon} \equiv y_{\epsilon}) \Rightarrow ((y_{\epsilon} \equiv z_{\epsilon}) \Rightarrow (x_{\epsilon} \equiv z_{\epsilon}))$$

Fuzzy type theory

Axioms and inference rules

Logical axioms of IMTL-FTT (IMTL_△algebra)

Equivalence axioms

(FT6)
$$(x_o \equiv y_o) \equiv ((x_o \Rightarrow y_o) \land (y_o \Rightarrow x_o))$$

(FT7) $(A_o \equiv \top) \equiv A_o$

Implication axioms

(FT8)
$$(A_o \Rightarrow B_o) \Rightarrow ((B_o \Rightarrow C_o) \Rightarrow (A_o \Rightarrow C_o))$$

(FT9) $(A_o \Rightarrow (B_o \Rightarrow C_o)) \equiv (B_o \Rightarrow (A_o \Rightarrow C_o))$
(FT10) $((A_o \Rightarrow B_o) \Rightarrow C_o) \Rightarrow (((B_o \Rightarrow A_o) \Rightarrow C_o) \Rightarrow C_o)$
(FT11) $(\neg B_o \Rightarrow \neg A_o) \equiv (A_o \Rightarrow B_o)$

Fuzzy type theory

Axioms and inference rules

Logical axioms of IMTL-FTT (IMTL_△algebra)

Conjunction axioms

(FT12) $A_o \wedge B_o \equiv B_o \wedge A_o$

(FT13) $A_o \wedge B_o \Rightarrow A_o$

(FT14)
$$(A_o \wedge B_o) \wedge C_o \equiv A_o \wedge (B_o \wedge C_o)$$

Delta axioms

(FT5) $(g_{oo}(\Delta x_o) \land g_{oo}(\neg \Delta x_o)) \equiv (\forall y_o)g_{oo}(\Delta y_o)$ (FT15) $\Delta(A_o \land B_o) \equiv \Delta A_o \land \Delta B_o$ (FT16) $\Delta(A_o \lor B_o) \Rightarrow \Delta A_o \lor \Delta B_o$

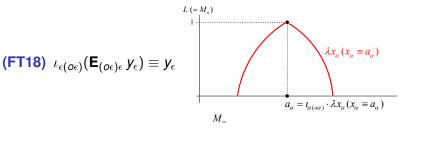
Fuzzy type theory

Axioms and inference rules

Logical axioms of IMTL-FTT (IMTL_△algebra)

Predicate axioms (FT17) $(\forall x_{\alpha})(A_{o} \Rightarrow B_{o}) \Rightarrow (A_{o} \Rightarrow (\forall x_{\alpha})B_{o}), x_{\alpha} \text{ is not free in } A_{o}$

Axiom of descriptions



A B > A B > A B >

ъ

- Fuzzy type theory

Axioms and inference rules

Inference rules and provability

Inference rules

(Rule R) Let $A_{\alpha} \equiv A'_{\alpha}$ and $B \in Form_o$. Then infer B' where B' comes form B by replacing one occurrence of A_{α} , which is not preceded by λ , by A'_{α} .

(Rule (N)) Let $A_o \in Form_o$ be a formula. Then from A_o infer ΔA_o .

Theory

- Theory *T* of FTT is a set of formulas of type *o*
- $T \vdash A$ as usual

- Fuzzy type theory

Axioms and inference rules

Inference rules and provability

Inference rules

(Rule R) Let $A_{\alpha} \equiv A'_{\alpha}$ and $B \in Form_o$. Then infer B' where B' comes form B by replacing one occurrence of A_{α} , which is not preceded by λ , by A'_{α} .

(Rule (N)) Let $A_o \in Form_o$ be a formula. Then from A_o infer ΔA_o .

Theory

- Theory T of FTT is a set of formulas of type o
- $T \vdash A$ as usual

• Representation of *truth* and *falsity*

$$\top := (\lambda x_o \, x_o \equiv \lambda x_o \, x_o) \qquad \bot := (\lambda x_o \, x_o \equiv \lambda x_o \, \top)$$

• Modus ponens and generalization are derived rules

Theorem (Deduction theorem)

Let T be a theory, $A_o \in Form_o$ a formula. Then

 $T \cup \{A_o\} \vdash B_o \quad iff \quad T \vdash \Delta A_o \Rightarrow B_o$

・ ロ ト ・ 雪 ト ・ ヨ ト ・

holds for every formula $B_o \in Form_o$.

• Representation of *truth* and *falsity*

$$\top := (\lambda x_o \, x_o \equiv \lambda x_o \, x_o) \qquad \bot := (\lambda x_o \, x_o \equiv \lambda x_o \, \top)$$

• Modus ponens and generalization are derived rules

Theorem (Deduction theorem)

Let T be a theory, $A_o \in Form_o$ a formula. Then

 $T \cup \{A_o\} \vdash B_o \quad iff \quad T \vdash \Delta A_o \Rightarrow B_o$

・ ロ ト ・ 雪 ト ・ 目 ト ・

ъ

holds for every formula $B_o \in Form_o$.

• Representation of *truth* and *falsity*

$$\top := (\lambda x_o \, x_o \equiv \lambda x_o \, x_o) \qquad \bot := (\lambda x_o \, x_o \equiv \lambda x_o \, \top)$$

• Modus ponens and generalization are derived rules

Theorem (Deduction theorem)

Let T be a theory, $A_o \in Form_o$ a formula. Then

$$T \cup \{A_o\} \vdash B_o \quad iff \quad T \vdash \Delta A_o \Rightarrow B_o$$

・ロット (雪) (日) (日)

holds for every formula $B_o \in Form_o$.

Fuzzy type theory

Few properties

Theorem

(a) A theory T of IMTL-FTT is consistent iff it has a general model *M*.

(b) For every theory T of IMTL-FTT and a formula A_o

 $T \vdash A_o$ iff $T \models A_o$.

Fuzzy type theory

Few properties

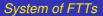
Theorem

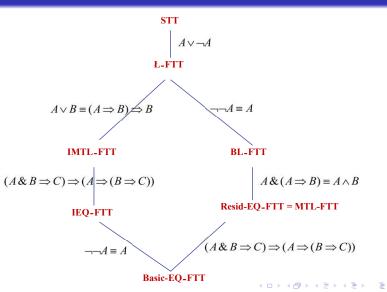
- (a) A theory T of IMTL-FTT is consistent iff it has a general model *M*.
- (b) For every theory T of IMTL-FTT and a formula A_o

 $T \vdash A_o$ iff $T \models A_o$.

Fuzzy type theory

Few properties





Claim

All essential properties of vague predicates are formally expressible in FTT and so, they have a many-valued model

- Formalization of the sorites (falakros) paradoxes
- Various practical extensions of FTT that can be (and are) effectively implemented
 - (a) Theory of the meaning of evaluative linguistic expressions
 - (b) Theory of fuzzy/linguistic IF-THEN rules and learning
 - (c) Theory of intermediate quantifiers
 - (d) Theory of common sense reasoning

FTT is highly expressive logic

Claim

All essential properties of vague predicates are formally expressible in FTT and so, they have a many-valued model

• Formalization of the sorites (falakros) paradoxes

- Various practical extensions of FTT that can be (and are) effectively implemented
 - (a) Theory of the meaning of evaluative linguistic expressions

- (b) Theory of fuzzy/linguistic IF-THEN rules and learning
- (c) Theory of intermediate quantifiers
- (d) Theory of common sense reasoning

Claim

All essential properties of vague predicates are formally expressible in FTT and so, they have a many-valued model

- Formalization of the sorites (falakros) paradoxes
- Various practical extensions of FTT that can be (and are) effectively implemented
 - (a) Theory of the meaning of evaluative linguistic expressions

- (b) Theory of fuzzy/linguistic IF-THEN rules and learning
- (c) Theory of intermediate quantifiers
- (d) Theory of common sense reasoning

• *Higher-order fuzzy logic* (FTT) is a nice and transparent formal theory

- FTT provides means for characterization of difficult problems connected with the vagueness phenomenon
- FTT is highly expressive and has many useful virtues
- FTT has great potential for various kinds of applications

- *Higher-order fuzzy logic* (FTT) is a nice and transparent formal theory
- FTT provides means for characterization of difficult problems connected with the vagueness phenomenon
- FTT is highly expressive and has many useful virtues
- FTT has great potential for various kinds of applications

- *Higher-order fuzzy logic* (FTT) is a nice and transparent formal theory
- FTT provides means for characterization of difficult problems connected with the vagueness phenomenon
- FTT is highly expressive and has many useful virtues
- FTT has great potential for various kinds of applications

- *Higher-order fuzzy logic* (FTT) is a nice and transparent formal theory
- FTT provides means for characterization of difficult problems connected with the vagueness phenomenon
- FTT is highly expressive and has many useful virtues
- FTT has great potential for various kinds of applications

- References

- P. Andrews, An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof, Kluwer, Dordrecht, 2002.
- A. Church, A formulation of the simple theory of types, J. Symb. Logic 5 (1940) 56–68.
- W. M. Farmer, *The seven virtues of simple type theory*, Journal of Applied Logic 6 (2008) 267–286.
- L. Henkin, Completeness in the theory of types, J. Symb. Logic 15 (1950) 81–91.
- L. Henkin, A theory of propositional types, Fundamenta Math. 52 (1963) 323–344.
- V. Novák, On fuzzy type theory, Fuzzy Sets and Systems 149 (2005) 235–273.
- V. Novák, EQ-algebra-based fuzzy type theory and its extensions, Logic Journal of the IGPL (to appear).
- V. Novák, A comprehensive theory of trichotomous evaluative linguistic expressions, Fuzzy Sets and Systems 159 (22) (2008) 2939-2969.
- V. Novák, S. Lehmke, Logical structure of fuzzy IF-THEN rules. Fuzzy Sets and Systems 157(2006), 20032029.
- L. Běhounek, P. Cintula, Fuzzy class theory, Fuzzy Sets and Systems

