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Higher-Order Fuzzy Logic

Introduction

What is fuzzy logic

Fuzzy logic is
a special many-valued logic whose aim is to provide means
that can be used for modeling of various aspects of the
vagueness phenomenon via the use of degrees of truth

FL in narrow sense — FLn
(a) propositional: traditional or evaluated syntax
(b) predicate: traditional or evaluated syntax
(c) higher order (fuzzy type theory)

Generalization of classical Simple Type Theory
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Fuzzy type theory

Motivation

History

B. Russel (1903,1908)
A. Church (1940), L. Henkin (1950, 1963), P. Andrews,
P. Martin-Löf, W. Farmer

(i) Type theory as a (higher-order) logic
(ii) Type theory as effective theoretical tool

in computer science

L. Henkin (1963)
Type theory with equality as its sole connective



�����

Higher-Order Fuzzy Logic

Fuzzy type theory

Motivation

History

B. Russel (1903,1908)
A. Church (1940), L. Henkin (1950, 1963), P. Andrews,
P. Martin-Löf, W. Farmer
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Fuzzy type theory

Motivation

Why FUZZY type theory

1 FTT provides a more transparent model of some deep
manifestations of the vagueness phenomenon
(including higher order vagueness)

2 Logical analysis of concepts and natural language
expressions requires higher-order logic (TT). Replacing TT
by FTT makes enables us to include vagueness in the
developed models.

3 FLb (Fuzzy Logic in Broader Sense) develops a model of
natural language semantics using FTT. We may thus bring
a formal theory of commonsense reasoning closer to the
human way of thinking.

4 Foundations of the whole “fuzzy” mathematics require
higher order fuzzy logic. The expressive power of FTT
makes the task easier.
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Fuzzy type theory

Motivation

Basic concepts

1 Truth degrees
2 Fuzzy equality
3 Types
4 Semantics based on frame (hierarchical structure of sets)
5 Syntax based on λ-calculus
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Fuzzy type theory

Truth degrees

Structure of truth degrees

Residuated lattice
L = 〈L,∨,∧,⊗,→,0,1〉

(Integral, commutative, bounded, residuated lattice )

1 E = 〈E ,∨,∧,0,1〉— lattice with 0,1
2 ⊗ is associative, commutative, a⊗ 1 = a
3 adjunction: a⊗ b ≤ c iff a ≤ b → c

(algebraic formulation of modus ponens)
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Fuzzy type theory

Truth degrees

Essential kinds of algebras of truth degrees

(i) prelinearity (a→ b) ∨ (b → a) = 1
(ii) divisibility a⊗ (a→ b) = a ∧ b
(iii) double negation ¬¬a = a

MTL-algebra — prelinearity
IMTL-algebra — prelinearity + double negation
BL-algebra — prelinearity + divisibility
MV-algebra — prelinearity + divisibility+double negation
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Fuzzy type theory

Truth degrees

EQ-algebras — special algebras for FTT

EQ-algebra
Algebra

E = 〈E ,∧,⊗,∼,1〉

of type (2, 2, 2, 0)

Fuzzy equality is the main (basic) operation
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Fuzzy type theory

Truth degrees

EQ-algebras

Definition
(E1) 〈E ,∧〉 is a ∧-semilattice with the top element 1
(E2) 〈E ,⊗,1〉 is a monoid

⊗ is isotone w.r.t. ≤ (a ≤ b iff a ∧ b = a)
(E3) a ∼ a = 1 (reflexivity)
(E4) ((a ∧ b) ∼ c)⊗ (d ∼ a) ≤ c ∼ (d ∧ b) (substitution)

(Leibniz rule of indiscernibility of identicals)
(E5) (a ∼ b)⊗ (c ∼ d) ≤ (a ∼ c) ∼ (b ∼ d) (congruence)
(E6) (a ∧ b ∧ c) ∼ a ≤ (a ∧ b) ∼ a (monotonicity)
(E7) a⊗ b ≤ a ∼ b (boundedness)
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Fuzzy type theory

Truth degrees

Special definitions in EQ-algebras

ã = a ∼ 1
a→ b = (a ∧ b) ∼ a (implication)
If E contains 0 then ¬a = a ∼ 0 (negation)
a↔ b = (a→ b) ∧ (b → a) (biimplication)
a ⇔̂ b = (a→ b)⊗ (b → a) (weak biimplication)
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Fuzzy type theory

Truth degrees

Basic properties

Theorem
(a) a ∼ b = b ∼ a (symmetry)
(b) (a ∼ b)⊗ (b ∼ c) ≤ (a ∼ c) (transitivity)
(c) (a→ b)⊗ (b → c) ≤ a→ c (transitivity of→)
(d) a→ b ≤ (a ∧ c)→ b (antitonicity of→)

“Semi- adjunction”

If a ≤ b → c, then a⊗ b ≤ c̃
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Fuzzy type theory

Truth degrees

Special EQ-algebras

EQ-algebra is:

(i) separated if a ∼ b = 1 iff a = b
(ii) good if a ∼ 1 = a
(iii) prelinear if for all a,b ∈ E

sup{a→ b,b → a} = 1

(iv) involutive if ¬¬a = a (IEQ-algebra)
(v) residuated if

(a⊗ b) ∧ c = a⊗ b iff a ∧ ((b ∧ c) ∼ b) = a
(vi) complete if it is ∧-semilattice complete.

(vii) `EQ-algebra if it is lattice ordered and
(E8) ((a ∨ b) ∼ c)⊗ (d ∼ a) ≤ ((d ∨ b) ∼ c)



�����

Higher-Order Fuzzy Logic

Fuzzy type theory

Truth degrees

Special EQ-algebras

EQ-algebra is:

(i) separated if a ∼ b = 1 iff a = b
(ii) good if a ∼ 1 = a
(iii) prelinear if for all a,b ∈ E

sup{a→ b,b → a} = 1

(iv) involutive if ¬¬a = a (IEQ-algebra)
(v) residuated if

(a⊗ b) ∧ c = a⊗ b iff a ∧ ((b ∧ c) ∼ b) = a
(vi) complete if it is ∧-semilattice complete.

(vii) `EQ-algebra if it is lattice ordered and
(E8) ((a ∨ b) ∼ c)⊗ (d ∼ a) ≤ ((d ∨ b) ∼ c)



�����

Higher-Order Fuzzy Logic

Fuzzy type theory

Truth degrees

Special EQ-algebras

EQ-algebra is:

(i) separated if a ∼ b = 1 iff a = b
(ii) good if a ∼ 1 = a
(iii) prelinear if for all a,b ∈ E

sup{a→ b,b → a} = 1

(iv) involutive if ¬¬a = a (IEQ-algebra)
(v) residuated if

(a⊗ b) ∧ c = a⊗ b iff a ∧ ((b ∧ c) ∼ b) = a
(vi) complete if it is ∧-semilattice complete.

(vii) `EQ-algebra if it is lattice ordered and
(E8) ((a ∨ b) ∼ c)⊗ (d ∼ a) ≤ ((d ∨ b) ∼ c)



�����

Higher-Order Fuzzy Logic

Fuzzy type theory

Truth degrees

Special EQ-algebras

EQ-algebra is:

(i) separated if a ∼ b = 1 iff a = b
(ii) good if a ∼ 1 = a
(iii) prelinear if for all a,b ∈ E

sup{a→ b,b → a} = 1

(iv) involutive if ¬¬a = a (IEQ-algebra)
(v) residuated if

(a⊗ b) ∧ c = a⊗ b iff a ∧ ((b ∧ c) ∼ b) = a
(vi) complete if it is ∧-semilattice complete.

(vii) `EQ-algebra if it is lattice ordered and
(E8) ((a ∨ b) ∼ c)⊗ (d ∼ a) ≤ ((d ∨ b) ∼ c)



�����

Higher-Order Fuzzy Logic

Fuzzy type theory

Truth degrees

Special EQ-algebras

EQ-algebra is:

(i) separated if a ∼ b = 1 iff a = b
(ii) good if a ∼ 1 = a
(iii) prelinear if for all a,b ∈ E

sup{a→ b,b → a} = 1

(iv) involutive if ¬¬a = a (IEQ-algebra)
(v) residuated if

(a⊗ b) ∧ c = a⊗ b iff a ∧ ((b ∧ c) ∼ b) = a
(vi) complete if it is ∧-semilattice complete.
(vii) `EQ-algebra if it is lattice ordered and

(E8) ((a ∨ b) ∼ c)⊗ (d ∼ a) ≤ ((d ∨ b) ∼ c)



�����

Higher-Order Fuzzy Logic

Fuzzy type theory

Truth degrees

Special EQ-algebras

EQ-algebra is:

(i) separated if a ∼ b = 1 iff a = b
(ii) good if a ∼ 1 = a
(iii) prelinear if for all a,b ∈ E

sup{a→ b,b → a} = 1

(iv) involutive if ¬¬a = a (IEQ-algebra)
(v) residuated if

(a⊗ b) ∧ c = a⊗ b iff a ∧ ((b ∧ c) ∼ b) = a
(vi) complete if it is ∧-semilattice complete.
(vii) `EQ-algebra if it is lattice ordered and

(E8) ((a ∨ b) ∼ c)⊗ (d ∼ a) ≤ ((d ∨ b) ∼ c)



�����

Higher-Order Fuzzy Logic

Fuzzy type theory

Truth degrees

Special EQ-algebras

EQ-algebra is:

(i) separated if a ∼ b = 1 iff a = b
(ii) good if a ∼ 1 = a
(iii) prelinear if for all a,b ∈ E

sup{a→ b,b → a} = 1

(iv) involutive if ¬¬a = a (IEQ-algebra)
(v) residuated if

(a⊗ b) ∧ c = a⊗ b iff a ∧ ((b ∧ c) ∼ b) = a
(vi) complete if it is ∧-semilattice complete.
(vii) `EQ-algebra if it is lattice ordered and

(E8) ((a ∨ b) ∼ c)⊗ (d ∼ a) ≤ ((d ∨ b) ∼ c)



�����

Higher-Order Fuzzy Logic

Fuzzy type theory

Truth degrees

Representation of prelinear EQ (EQ∆)-algebras

Theorem (M. El Zekey)
Let E be a good EQ-algebra. The following are equivalent:
(a) E is subdirectly embeddable into a product of linearly

ordered good EQ-algebras.
(b) E satisfies

(a→ b) ∨ (d → (d ⊗ (c → ((b → a)⊗ c)))) = 1
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Fuzzy type theory

Truth degrees

Examples of EQ-algebras

Each residuated lattice

L = 〈L,∨,∧,⊗,→,0,1〉

is a good residuated `-EQ-algebra

E = 〈E ,∧,⊗,∼,1〉

with fuzzy equality ∼ identified with the biresiduation

a↔ b = (a→ b) ∧ (b → a)
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Fuzzy type theory

Truth degrees

Examples of EQ-algebras — 6-element non-separated EQ-algebra

0

cb

a

d

1 ⊗ 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 0 0 0 a
b 0 0 a a a b
c 0 0 a 0 a c
d 0 0 a a a d
1 0 a b c d 1

∼ 0 a b c d 1
0 1 0 0 0 0 0
a 0 1 d d d d
b 0 d 1 d d d
c 0 d d 1 d d
d 0 d d d 1 1
1 0 d d d 1 1
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Fuzzy type theory

Truth degrees

Examples of EQ-algebras — 6-element non-separated EQ-algebra

→ 0 a b c d 1
0 1 1 1 1 1 1
a 0 1 1 1 1 1
b 0 1 1 1 1 1
c 0 1 1 1 1 1
d 0 d d d 1 1
1 0 d d d 1 1

Not residuated:

0 = a⊗d ≤ 0 but a 6≤ d → 0 = 0
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Fuzzy type theory

Truth degrees

Delta operation

In linearly ordered structure of truth values:

∆(a) =

{
1 if a = 1,
0 otherwise.

(determined algebraically in partially ordered structures)

All structures of truth values considered in FTT must contain
the delta operation



�����

Higher-Order Fuzzy Logic

Fuzzy type theory

Fuzzy equality and functions

Fuzzy equality

Given a set M
$: M ×M −→ E

(i) Reflexivity: [m $ m] = 1
(ii) Symmetry: [m $ m′] = [m′ $ m]

(iii) Transitivity: [m $ m′]⊗ [m′ $ m′′] ≤ [m $ m′′]

Example
M = R, E is Łukasiewicz MV-algebra

[m $ m′] = 0 ∨ (1− |m −m′|)
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Fuzzy type theory

Fuzzy equality and functions

Function of n variables can be expressed using functions of one variable

M. Schönfinkel, H. Curry, G. Frege
(currying)

1

2

a

b

X

Y

Z

:f X Y Z× →

α

β

γ
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Fuzzy type theory

Types

Types are indexes of specific sets

Elementary types:
(i) o (truth values) — Mo = E

(ii) ε (objects) — Mε

Compound types:
Functions f : Mα −→ Mβ form a subset Mβα ⊆ MMα

β

Types
(i) ε,o ∈ Types,

(ii) If α, β ∈ Types then (αβ) ∈ Types.

Alternative notation
Write α→ β instead of βα
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Fuzzy type theory

Semantics

General frame

M = 〈{Mα,$α| α ∈ Types}, E∆〉

(Mo = {a | a ∈ L},∼) (Mε = {m | ϕ(m)},=ε)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Moo ⊆ {goo | goo : Mo −→ Mo},=oo)
(Moε ⊆ {foε | foε : Mε −→ Mo},=oε)

(Mεε ⊆ {fεε | fεε : Mε −→ Mε},=εε), . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Mβα ⊆ {fβα | fβα : Mα −→ Mβ},=βα)
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...
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Fuzzy type theory

Syntax

Formulas

Formulas
(i) Variables xα and constants cα are formulas of type α.

(ii) If Bβα and Aα are formulas then (BβαAα) is a formula of
type β.

(iii) If Aβ is a formula and xα ∈ J a variable then λxα Aβ is a
formula of type βα.

Formulas Ao are propositions

Alternative notation

1 Write A : α instead of Aα

2 Formulas are also called lambda terms
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Fuzzy type theory

Syntax

Fuzzy equality

Special formula (constant)
E(oα)α

Definition of fuzzy equality

≡ := λxαλyα(E(oα)α yα)xα.

Aα ≡ Bα is a formula of type o

All connectives in FTT are formulas
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Fuzzy type theory

Semantics

Truth values in FTT

Truth values should form either of:
1 a complete linearly ordered IMTL∆-algebra
2 linearly ordered Łukasiewicz∆-algebra
3 linearly ordered BL∆-algebra
4 linearly ordered EQ∆-algebra or IEQ∆-algebra
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Fuzzy type theory

Semantics

Interpretation of formulas

ME(Aβα) ∈ Mβα

Example (interpretation)

ME(Ao) ∈ L is a truth value
ME(Aoε) is fuzzy set in Mε

ME(A(oε)ε) is fuzzy relation on Mε

ME(A(oo)ε) is fuzzy set of type 2
ME(Aεε) is function on objects
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Fuzzy type theory

Axioms and inference rules

Logical axioms of IMTL-FTT (IMTL∆algebra)

Fundamental axioms
(FT1) ∆∆∆(xα ≡ yα)⇒⇒⇒ (fβα xα ≡ fβα yα)

(FT21) (∀xα)(fβα xα ≡ gβα xα)⇒⇒⇒ (fβα ≡ gβα)

(FT22) (fβα ≡ gβα)⇒⇒⇒ (fβα xα ≡ gβα xα)

(FT3) (λxαBβ)Aα ≡ Cβ

where Cβ is obtained from Bβ by replacing all free
occurrences of xα in it by Aα (lambda conversion)

(FT4) (xε ≡ yε)⇒⇒⇒ ((yε ≡ zε)⇒⇒⇒ (xε ≡ zε))
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Fuzzy type theory

Axioms and inference rules

Logical axioms of IMTL-FTT (IMTL∆algebra)

Equivalence axioms
(FT6) (xo ≡ yo) ≡ ((xo ⇒⇒⇒ yo)∧∧∧ (yo ⇒⇒⇒ xo))

(FT7) (Ao ≡ >) ≡ Ao

Implication axioms
(FT8) (Ao ⇒⇒⇒ Bo)⇒⇒⇒ ((Bo ⇒⇒⇒ Co)⇒⇒⇒ (Ao ⇒⇒⇒ Co))

(FT9) (Ao ⇒⇒⇒ (Bo ⇒⇒⇒ Co)) ≡ (Bo ⇒⇒⇒ (Ao ⇒⇒⇒ Co))

(FT10) ((Ao ⇒⇒⇒ Bo)⇒⇒⇒ Co)⇒⇒⇒ (((Bo ⇒⇒⇒ Ao)⇒⇒⇒ Co)⇒⇒⇒ Co)

(FT11) (¬¬¬Bo ⇒⇒⇒¬¬¬Ao) ≡ (Ao ⇒⇒⇒ Bo)
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Fuzzy type theory

Axioms and inference rules

Logical axioms of IMTL-FTT (IMTL∆algebra)

Conjunction axioms
(FT12) Ao ∧∧∧ Bo ≡ Bo ∧∧∧ Ao

(FT13) Ao ∧∧∧ Bo ⇒⇒⇒ Ao

(FT14) (Ao ∧∧∧ Bo)∧∧∧ Co ≡ Ao ∧∧∧ (Bo ∧∧∧ Co)

Delta axioms
(FT5) (goo(∆∆∆xo)∧∧∧ goo(¬¬¬∆∆∆xo)) ≡ (∀yo)goo(∆∆∆yo)

(FT15) ∆∆∆(Ao ∧∧∧ Bo) ≡∆∆∆Ao ∧∧∧∆∆∆Bo

(FT16) ∆∆∆(Ao ∨∨∨ Bo)⇒⇒⇒∆∆∆Ao ∨∨∨∆∆∆Bo
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Fuzzy type theory

Axioms and inference rules

Logical axioms of IMTL-FTT (IMTL∆algebra)

Predicate axioms
(FT17) (∀xα)(Ao ⇒⇒⇒ Bo)⇒⇒⇒ (Ao ⇒⇒⇒ (∀xα)Bo), xα is not free in Ao

Axiom of descriptions

(FT18) ιε(oε)(E(oε)ε yε) ≡ yε

1

( )x x a
α α α

λ ≡

( ) ( )
o

a x x a
α α α α α α

ι λ= ⋅ ≡

( )
o

L M=

M
α
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Fuzzy type theory

Axioms and inference rules

Inference rules and provability

Inference rules
(Rule R) Let Aα ≡ A′

α and B ∈ Formo. Then infer B′ where B′

comes form B by replacing one occurrence of Aα,
which is not preceded by λ, by A′

α.
(Rule (N)) Let Ao ∈ Formo be a formula. Then from Ao infer

∆∆∆Ao.

Theory
Theory T of FTT is a set of formulas of type o
T ` A — as usual
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Fuzzy type theory

Few properties

Representation of truth and falsity

> := (λxo xo ≡ λxo xo) ⊥ := (λxo xo ≡ λxo >)

Modus ponens and generalization are derived rules

Theorem (Deduction theorem)
Let T be a theory, Ao ∈ Formo a formula. Then

T ∪ {Ao} ` Bo iff T `∆∆∆Ao ⇒⇒⇒ Bo

holds for every formula Bo ∈ Formo.
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Fuzzy type theory

Few properties

Completeness

Theorem
(a) A theory T of IMTL-FTT is consistent iff it has a general

modelM.
(b) For every theory T of IMTL-FTT and a formula Ao

T ` Ao iff T |= Ao.
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Fuzzy type theory

Few properties

System of FTTs

Ł-FTT

IMTL-FTT

IEQ-FTT

BL-FTT

Resid-EQ-FTT = MTL-FTT

Basic-EQ-FTT

STT
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FTT is highly expressive logic

Claim
All essential properties of vague predicates are formally
expressible in FTT and so, they have a many-valued model

Formalization of the sorites (falakros) paradoxes
Various practical extensions of FTT that can be (and are)
effectively implemented
(a) Theory of the meaning of evaluative linguistic expressions
(b) Theory of fuzzy/linguistic IF-THEN rules and learning
(c) Theory of intermediate quantifiers
(d) Theory of common sense reasoning
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Conclusions

Higher-order fuzzy logic (FTT) is a nice and transparent
formal theory
FTT provides means for characterization of difficult
problems connected with the vagueness phenomenon
FTT is highly expressive and has many useful virtues
FTT has great potential for various kinds of applications
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