

Streamlining the Applied Mathematics Studies at Faculty of Science of Palacký University in Olomouc CZ.1.07/2.2.00/15.0243

INVESTMENTS IN EDUCATION DEVELOPMENT

International Conference Olomoucian Days of Applied Mathematics

ODAM 2011

Department of Mathematical analysis and Applications of Mathematics Faculty of Science Palacký University Olomouc

Strange Design Points in Linear Regression

Andrej Pázman

Department of Applied Mathematics and Statistics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

ODAM Olomouc 26.-28.1. 2011

Introduction

Model under consideration

$$y_x = \mathbf{f}^{\mathsf{T}}(x)\boldsymbol{\theta} + \varepsilon_x, \ x \in \mathcal{X}$$

- $oldsymbol{ heta} \in \mathbb{R}^m$ vector of unknown parameters,
- y_{x_1}, \ldots, y_{x_N} observations at N design points $x_1, \ldots, x_N \in \mathcal{X}$,
- X design space.
- Without loss of generality $\mathcal{X} = \langle a, b \rangle$.
- In a vector notation

$$\begin{aligned} \mathbf{y} &= \mathbf{F}\boldsymbol{\theta} + \boldsymbol{\varepsilon}, \text{ where} \\ \mathbf{y} &= (y_{x_1}, \dots, y_{x_N})^{\mathsf{T}}, \\ \mathbf{F} &= \begin{pmatrix} \mathbf{f}^{\mathsf{T}}(x_1) \\ \vdots \\ \mathbf{f}^{\mathsf{T}}(x_N) \end{pmatrix} \\ \boldsymbol{\varepsilon} &= (\varepsilon_{x_1}, \dots, \varepsilon_{x_N})^{\mathsf{T}}, \ \mathbb{E}[\boldsymbol{\varepsilon}] = \mathbf{0}, \ \mathbb{V}\mathrm{ar}[\boldsymbol{\varepsilon}] = \sigma^2 \mathsf{W}. \end{aligned}$$

Introduction

• Particular case: Polynomial regression on an interval

$$y_x = \theta_1 + \theta_2 x + \dots + \theta_m x^{m-1} + \varepsilon_x$$

•
$$x \in \langle a, b \rangle$$
,
• $\mathbf{f}(x) = (1, x, \dots, x^{m-1})^{\mathsf{T}}$

Andrej Pázman (DAMS, FMPhI CU) Strange Design Points in Linear Regression

Introduction

• The estimator for θ is given by (weighted) least squares (LS) method

$$\hat{oldsymbol{ heta}} = rg\min_{oldsymbol{ heta} \in \mathbb{R}^m} (oldsymbol{\mathsf{y}} - oldsymbol{\mathsf{F}} oldsymbol{ heta})^\mathsf{T} oldsymbol{\mathsf{W}}^{-1} (oldsymbol{\mathsf{y}} - oldsymbol{\mathsf{F}} oldsymbol{ heta}) = oldsymbol{\mathsf{M}}^{-1} oldsymbol{\mathsf{F}}^\mathsf{T} oldsymbol{\mathsf{W}}^{-1} (oldsymbol{\mathsf{y}} - oldsymbol{\mathsf{F}} oldsymbol{ heta}) = oldsymbol{\mathsf{M}}^{-1} oldsymbol{\mathsf{F}}^\mathsf{T} oldsymbol{\mathsf{W}}^{-1} (oldsymbol{\mathsf{y}} - oldsymbol{\mathsf{F}} oldsymbol{ heta}) = oldsymbol{\mathsf{M}}^{-1} oldsymbol{\mathsf{F}}^\mathsf{T} oldsymbol{\mathsf{W}}^{-1} (oldsymbol{\mathsf{y}} - oldsymbol{\mathsf{F}} oldsymbol{ heta}) = oldsymbol{\mathsf{M}}^{-1} oldsymbol{\mathsf{F}}^\mathsf{T} oldsymbol{\mathsf{W}}^{-1} (oldsymbol{\mathsf{y}} - oldsymbol{\mathsf{F}} oldsymbol{ heta}) = oldsymbol{\mathsf{M}}^{-1} oldsymbol{\mathsf{F}}^\mathsf{T} oldsymbol{\mathsf{W}}^{-1} (oldsymbol{\mathsf{y}} - oldsymbol{\mathsf{F}} oldsymbol{ heta}) = oldsymbol{\mathsf{M}}^{-1} oldsymbol{\mathsf{F}}^\mathsf{T} oldsymbol{\mathsf{W}}^{-1} (oldsymbol{\mathsf{y}} - oldsymbol{\mathsf{F}} oldsymbol{\mathsf{H}}) = oldsymbol{\mathsf{M}}^{-1} oldsymbol{\mathsf{H}}^\mathsf{T} oldsymbol{\mathsf{W}}^{-1} (oldsymbol{\mathsf{y}} - oldsymbol{\mathsf{H}}^\mathsf{T} oldsymbol{\mathsf{W}}^{-1} oldsymbol{\mathsf{y}}) = oldsymbol{\mathsf{M}}^{-1} oldsymbol{\mathsf{H}}^\mathsf{T} oldsymbol{\mathsf{W}}^{-1} oldsymbol{\mathsf{Y}}^\mathsf{T} oldsymbol{\mathsf{H}}^\mathsf{T} oldsymbol{\mathsf{H}}^\mathsf{T} oldsymbol{\mathsf{H}}^\mathsf{T} oldsymbol{\mathsf{W}}^{-1} oldsymbol{\mathsf{Y}}^\mathsf{T} oldsymbol{\mathsf{H}}^\mathsf{T} oldsymbol{\mathsf{W}}^{-1} oldsymbol{\mathsf{Y}}^\mathsf{T} oldsymbol{\mathsf{H}}^\mathsf{T} oldsym$$

M ≡ M(x₁,...,x_N) = F^TW⁻¹F - the information matrix (for σ = 1).
 The Gauss-Markov theorem: θ̂ is BLUE.

We have

$$\begin{split} \mathbb{V}\mathrm{ar}[\hat{\boldsymbol{\theta}}] &= \sigma^2 \mathbf{M}^{-1}, \text{ if } \det[\mathbf{M}] \neq 0, \\ \mathbb{V}\mathrm{ar}[\mathbf{h}^{\mathsf{T}} \hat{\boldsymbol{\theta}}] &= \sigma^2 \mathbf{h}^{\mathsf{T}} \mathbf{M}^{\mathsf{-}} \mathbf{h}, \text{ if } \mathbf{h} \in \mathscr{M}(\mathbf{M}), \end{split}$$

- M⁻ an arbitrary g-inverse of M,
- $\mathcal{M}(M)$ the column space of M,
- $\hat{ heta}$ solves the normal equation

$$\mathbf{M}\boldsymbol{\theta} = \mathbf{F}^{\mathsf{T}}\mathbf{W}^{-1}\mathbf{y}.$$

• Evidently, the position of the design points x_1, \ldots, x_N influences the variances, as well as the form of the estimated regression function

$$\eta(\mathbf{x}, \hat{\boldsymbol{\theta}}) = \mathbf{f}^{\mathsf{T}}(\mathbf{x})\hat{\boldsymbol{\theta}}.$$

• It seems, however, that nothing surprising can be found in this model. We shall try to prove the opposite.

Consider the following setting:

• The model = a quadratic polynomial without intercept:

$$\eta(x,\theta) = \theta_1 x + \theta_2 x^2 \tag{1}$$

- $\mathcal{X} = \langle 0, 10 \rangle$.
- The aim is to estimate the value of $\eta(x, \theta)$ at $\bar{x} = 1$.
- We have to perform 10 independent observations.

Observations at one point

First design: all observations at one point

- "Natural" design: $x_1 = \ldots = x_{10} = \overline{x}$.
- Then we have

W

$$\mathbf{M}(\bar{x}) = 10 \begin{pmatrix} \bar{x} \\ \bar{x}^2 \end{pmatrix} \begin{pmatrix} \bar{x} & \bar{x}^2 \end{pmatrix} = 10 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix},$$

$$\mathbf{M}^-(\bar{x}) = \frac{1}{40} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix},$$

$$\operatorname{Far}[\eta(\bar{x}, \hat{\theta})] = \sigma^2 \begin{pmatrix} 1 & 1 \end{pmatrix} \frac{1}{40} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{\sigma^2}{10} = \operatorname{Var}\left[\frac{1}{10} \sum_{i=1}^{10} y_i\right].$$

Observations at two points

Second design: observations at two points

• 5 observations at $x_1 = \bar{x} + t$ and 5 at $x_2 = \bar{x} + ct$, t > 0 small, $c \in \langle -1, 1 \rangle$.

Then we have

$$\begin{split} \mathbf{M}(x_1, x_2) &= 5 \begin{pmatrix} x_1^2 & x_1^3 \\ x_1^3 & x_1^4 \end{pmatrix} + 5 \begin{pmatrix} x_2^2 & x_2^3 \\ x_2^3 & x_2^4 \end{pmatrix}, \\ \mathbf{M}^{-1}(x_1, x_2) &= \frac{1}{5x_1^2 x_2^2 (x_1 - x_2)^2} \begin{pmatrix} x_1^4 + x_2^4 & -x_1^3 - x_2^3 \\ -x_1^3 - x_2^3 & x_1^2 + x_2^2 \end{pmatrix}, \\ \mathbb{V}ar[\eta(\bar{x}, \hat{\theta})] &= \sigma^2 (1 \ 1) \mathbf{M}^{-1}(x_1, x_2) \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ &= \frac{\sigma^2}{5(1 - c)^2} \left[\frac{1}{(1 + ct)^2} + \frac{c^2}{(1 + t)^2} \right], \end{split}$$

Observations at two points

In the limit we have

$$\mathbb{V}\mathrm{ar}[\eta(ar{x}, \hat{oldsymbol{ heta}})]
ightarrow rac{\sigma^2(1+c^2)}{5(1-c)^2}$$

for $t \rightarrow 0$.

- Consequently, Var[η(x̄, θ̂] is arbitrary large if we take c sufficiently close to 1, regardless how small is t, i.e., how close are the points x₁ and x₂ to x̄ = 1.
- For any c ≠ −1 the limit variance is larger than when performing all observations at one point x̄.

Consequences

Consequences:

- i) mathematically, we have a very clear discontinuity of the variance when considering it as a function of the design,
- ii) we have a conflict between singular and regular regression models.
 - We observe just at one point $\bar{x} \Rightarrow$ singular regression model, since just one important parameter, namely $\eta(\bar{x}, \theta)$.
 - We observe at two points, we have a regular model with two parameters to be estimated. If the points are very close to \bar{x} , the model is "bad conditioned" \Rightarrow some functions of the parameters are estimated with high variances, in our case $\eta(\bar{x}, \theta)$.

Consequences

iii) We have a statistical paradox on an elementary level.

- the estimator $\eta(\bar{x}, \hat{\theta})$ should not be so sensitive to the choice of design points as given by the theory.
- However, this reflection contains implicitly the a priori assumption that the values η(x̄, θ), η(x₁, θ), η(x₂, θ) do not differ very much.
- Hence, quadratic model (1) is not adequate for such an assumption (it does not exclude a very narrow parabola) ⇒ gives very different values of η(x̄, θ), η(x₁, θ), η(x₂, θ) even if x̄, x₁, x₂ are very close to each other.

Consequences

Consequences

... the "paradoxical" result obtained from the theory is statistically correct, but the model does not correspond to our "intuitive" assumptions.

To go out we either must

- use a **Bayesian modelling** rejecting "a priori" the possibility of a narrow parabola, or we must
- use another regression model, say we must suppose that for x in a neighborhood of the point x
 a one-parameter model

$$\eta(\mathbf{x},\boldsymbol{\theta})=\theta_1$$

is acceptable.

Nonlinear parametric function

The situation is even worse when we want to estimate a nonlinear function of θ_1 and θ_2 :

• Suppose we want to estimate the position x_0 of the extreme point:

$$\frac{\mathrm{d}(\theta_1 x + \theta_2 x^2)}{\mathrm{d}x}\bigg|_{x=x_0} = 0 \ \Rightarrow \ x_0 = -\frac{\theta_1}{2\theta_2} \ \Rightarrow \ \hat{x}_0 = -\frac{\hat{\theta}_1}{2\hat{\theta}_2}$$

• AP&LP (Statistics & Probability Letters (2006)): If we observe m times at the "true" point x_0 and N - m times at a point x_1 which is close to x_0 , it may happen that the limit distribution of $-\frac{\hat{\theta}_1}{2\hat{\theta}_2}$ is asymtotically not normal for $N \to \infty$, or still normal but with a "strange" variance. All depends on the behavior of m/N.

Again consider the quadratic model

$$y_x = \eta(x, \theta) + \varepsilon_x = \theta_1 x + \theta_2 x^2 + \varepsilon_x,$$

with N = 10 independent observations at hand, $\bar{x} = 1$, and we estimate the value of $\eta(\bar{x}, \theta)$.

Is the strategy to perform all N observations at \bar{x} optimal?

No!

Elfving Theorem

Let ...

•
$$y = \mathbf{f}^{\mathsf{T}}(x)\boldsymbol{\theta} + \varepsilon_x$$
,

•
$$\operatorname{Var}[\varepsilon_x] = \sigma^2$$
,

- observations be independent,
- $S = co({\mathbf{f}(x) : x \in \mathcal{X}} \cup {-\mathbf{f}(x) : x \in \mathcal{X}})$ co(T) – minimal convex set containing T = convex hull of T.

Elfving Theorem

Andrej Pázman (DAMS, FMPhI CU) Strange Design Points in Linear Regression

Elfving Theorem

Theorem

Suppose that we want to estimate $\mathbf{h}^{\mathsf{T}}\boldsymbol{\theta}$ optimally. Take $\beta \geq 0$ such that the point $\beta \mathbf{h}$ is on the boundary of the set S. Take points $x_1^*, \ldots, x_k^* \in \mathcal{X}$ such that

- the points $\mathbf{f}(x_1^*), \ldots, \mathbf{f}(x_k^*)$ are on the boundary of S,
- 2 the vector $\beta \mathbf{h}$ can be expressed as $\beta \mathbf{h} = \sum_{i=1}^{k} \gamma_i \mathbf{f}(x_i^*)$, with $\gamma_i \in \langle -1, 1 \rangle$ and $\sum_{i=1}^{k} |\gamma_i| = 1$.

Then

• the design giving $|\gamma_i| \times 100\%$ of (uncorrelated) observations at x_i^* is the design minimizing $\mathbb{V}ar[\mathbf{h}^T \hat{\boldsymbol{\theta}}]$, and

2 the corresponding minimal variance is equal to $\frac{\sigma^2}{N\beta^2}$.

Elfving Theorem

• In our case the vector $\mathbf{f}(\bar{x})$ is in the interior of S. So we have to take $\beta > 1$ and the variance of the optimal design gives

$$\mathbb{V}\mathrm{ar}[\eta(ar{x}, \hat{oldsymbol{ heta}})] < \mathbb{V}\mathrm{ar}\left(rac{1}{10}\sum_{i=1}^{10}y_i
ight)$$

ODAM 2011 19 / 33

Design points giving zero information about heta

• General model

$$y_x = \mathbf{f}^{\mathsf{T}}(x)\boldsymbol{\theta} + \varepsilon_x,$$

 $\mathbb{E}[\varepsilon_x] = 0.$

If Var[ε_x] = σ²I and observations are uncorrelated, then the information matrix

$$\mathbf{M}(x_1,\ldots,x_N)=\sum_{i=1}^N\mathbf{f}(x_i)\mathbf{f}^{\mathsf{T}}(x_i).$$

• **f**(*x_i*)**f**^T(*x_i*) – information at one design point *x_i*, does not depend on the used design.

In the uncorrelated case a design point x_i gives zero information about θ if and only if $\mathbf{f}(x_i) = \mathbf{0}$.

Design points giving zero information about heta

The situation may be quite different, and somehow surprising, when the observations are correlated:

•
$$\mathbb{E}[\boldsymbol{\varepsilon}] = \mathbf{0}$$
, $\mathbb{V}ar[\boldsymbol{\varepsilon}] = \sigma^2 \mathbf{W}$, $det[\mathbf{W}] \neq 0$.

۵

$$\mathbf{M}(x_1,\ldots,x_N) = \mathbf{F}^{\mathsf{T}}\mathbf{W}^{-1}\mathbf{F} = \sum_{i=1}^N \sum_{j=1}^N \mathbf{f}(x_i) \{\mathbf{W}^{-1}\}_{ij} \mathbf{f}^{\mathsf{T}}(x_j).$$

 Even when W is known, it is not quite transparent, which design points give zero information about θ.

Intuitively, one can perhaps argue also here that $\mathbf{f}(x) = \mathbf{0}$ implies that in the model $y_x = \mathbf{f}^{\mathsf{T}}(x)\boldsymbol{\theta} + \varepsilon_x$, $x \in \mathcal{X}$, y_x is not influenced by the value of $\boldsymbol{\theta}$, hence should give no information about $\boldsymbol{\theta}$. **This intuitive approach is false.** Example:

- $\theta \in \mathbb{R}$, take $\{x, z\}$ a two point design such that f(x) = 0, f(z) = 1, and suppose that $W_{xx} = W_{zz} = 1$, but $W_{xz} \neq 0$.
- We have

$$\mathbf{M}(x,z) = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & W_{xz} \\ W_{xz} & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{1 - (W_{xz})^2} > 1 = \mathbf{M}(\{z\}).$$

So although f(x) = 0, by deleting the point x from the design we can lose much information. The contribution of the point x to M(x, z) is very large even if f(x) = 0, when the observations y_x and y_z are highly correlated.

Proposition

(AP, Kybernetika (2010)) Suppose that the point x_k is deleted from the design $D = \{x_1, \ldots, x_N\}$. Then the resulting information matrix is

$$\mathsf{M}(D - \{x_k\}) = \mathsf{M}(D) - \frac{\mathsf{a}(x_k)\mathsf{a}^{\mathsf{T}}(x_k)}{\{\mathsf{W}^{-1}\}_{k,k}},$$

where

$$\mathbf{a}(x_k) = \sum_{i=1}^{N} {\{\mathbf{W}^{-1}\}_{k,i} \mathbf{f}(x_i)}.$$

Consequently, the design point x_k gives zero information about θ if and only if $\mathbf{a}(x_k) = \mathbf{0}$.

Proof.

Take $\mathbf{s} = (0, \dots, 0, c, 0, \dots, 0)^T$ having c > 0 at the *k*th coordinate. We have (cf. Harville)

$$(\mathbf{W} + \mathbf{s}\mathbf{s}^{\mathsf{T}})^{-1} = \mathbf{W}^{-1} - \frac{\mathbf{W}^{-1}\mathbf{s}\mathbf{s}^{\mathsf{T}}\mathbf{W}^{-1}}{1 + \mathbf{s}^{\mathsf{T}}\mathbf{W}^{-1}\mathbf{s}}.$$

Hence

$$\mathbf{M}(D - \{x_k\}) = \lim_{c \to \infty} \mathbf{F}^{\mathsf{T}} (\mathbf{W} + \mathbf{s}\mathbf{s}^{\mathsf{T}})^{-1} \mathbf{F} = \mathbf{M}(D) - \lim_{c \to \infty} \frac{c^2 \mathbf{a}(x_k) \mathbf{a}^{\mathsf{T}}(x_k)}{1 + c^2 \{\mathbf{W}^{-1}\}_{k,k}}.$$

Design points giving zero information about heta

- To express that the information at a design point x_k is small we need measures of information which are one dimensional (scalars) – we shall consider information functionals, which are concave, monotone, real-valued functions defined on the set of positive definite matrices (see Pukelsheim (1993)).
- The gradient of Φ is $\nabla \Phi[\mathbf{M}]$, with

$$\{ \nabla \Phi[\mathsf{M}] \}_{ij} = \frac{\partial \Phi[\mathsf{M}]}{\partial \{M\}_{ij}}.$$

	function	gradient
D-optimality	$\ln \det(\mathbf{M})$	M^{-1}
A-optimality	$-\mathrm{tr}(\mathbf{M}^{-1})$	M^{-2}

• For a fixed design $D = \{x_1, \ldots, x_N\}$ we denote

$$\|\mathbf{a}(x_k)\|_{\Phi}^2 = \mathbf{a}^{\mathsf{T}}(x_k) \boldsymbol{\nabla} \Phi[\mathbf{M}(D)] \mathbf{a}(x_k),$$

which is a (pseudo)norm, since concavity of Φ implies that the gradient $\nabla \Phi[\mathbf{M}]$ is a positive (semi)definite matrix of \mathbf{M} (see WM&AP, Biometrika (2003)).

• Example: $\Phi[M] = \ln \det(M)$

$$\|\mathbf{a}(x_k)\|_{\Phi}^2 = \mathbf{a}^{\mathsf{T}}(x_k)\mathbf{M}^{-1}(D)\mathbf{a}(x_k).$$

Proposition

We have

$$\Phi[\mathbf{M}(D - \{x_k\})] = \Phi[\mathbf{M}(D)] - \frac{\|\mathbf{a}(x_k)\|_{\Phi}^2}{\{\mathbf{W}^{-1}\}_{x_k, x_k}} + o(\|\mathbf{a}(x_k)\|_{\Phi}^3),$$

with $\lim_{t\to 0} o(t)/t = 0$. Consequently, the amount of information obtained from the design point x_k is small iff the expression $\frac{\|\mathbf{a}(x_k)\|_{\Phi}^2}{\{\mathbf{W}^{-1}\}_{x_k,x_k}}$ is small.

Proof.

From the Taylor formula applied to the matrix function $\bm{M} \mapsto \bm{\Phi}[\bm{M}]$ we obtain

$$\Phi[\mathbf{M}(D - \{x_k\})] = \Phi\left[\mathbf{M}(D) - \frac{\mathbf{a}(x_k)\mathbf{a}^{\mathsf{T}}(x_k)}{\{\mathbf{W}^{-1}\}_{k,k}}\right]$$
$$= \Phi[\mathbf{M}(D)] - \operatorname{tr}\left\{\nabla\Phi[\mathbf{M}(D)]\left[\frac{\mathbf{a}(x_k)\mathbf{a}^{\mathsf{T}}(x_k)}{\{\mathbf{W}^{-1}\}_{k,k}}\right]\right\}$$
$$+ \operatorname{term of order} \|\mathbf{a}(x_k)\|_{\Phi}^{4}$$
$$= \Phi[\mathbf{M}(D)] - \frac{\|\mathbf{a}(x_k)\|_{\Phi}^{2}}{\{\mathbf{W}^{-1}\}_{k,k}}.$$

ODAM 2011

28 / 33

Design points sensitive to outliers

Model:

$$y_i = \mathbf{f}^{\mathsf{T}}(x_i)\boldsymbol{\theta} + \varepsilon_i, \ i = 1, \dots, N,$$
$$\mathbb{E}[\boldsymbol{\varepsilon}] = \mathbf{0}, \mathbb{V}\mathrm{ar}[\boldsymbol{\varepsilon}] = \sigma^2 \mathbf{W}.$$

Proposition

Suppose that the information matrix **M** is nonsingular. Then for any i = 1, ..., N we have

$$\mathbf{f}^{\mathsf{T}}(x_i)\mathbf{M}^{-1}\mathbf{f}(x_i) \leq \{\mathbf{W}\}_{ii}.$$

In the extreme case that

$$\mathbf{f}^{\mathsf{T}}(x_i)\mathbf{M}^{-1}\mathbf{f}(x_i) = \{\mathbf{W}\}_{ii},$$

the graph of the estimated regression function $x \in \langle a, b \rangle \mapsto \eta(x, \hat{\theta})$ contains the point $[x_i, y_{x_i}]$.

Proof.

Using the expression for the estimate $\hat{ heta}$ we have

$$\begin{aligned} \mathbb{V}\operatorname{ar}[\mathbf{y} - \mathbf{F}\hat{\boldsymbol{\theta}}] &= \mathbb{V}\operatorname{ar}[(\mathbf{I} - \mathbf{F}\mathbf{M}^{-1}\mathbf{F}^{\mathsf{T}}\mathbf{W}^{-1})\mathbf{y}] \\ &= \sigma^{2}(\mathbf{W} - \mathbf{F}\mathbf{M}^{-1}\mathbf{F}^{\mathsf{T}}). \end{aligned}$$

Consequently, $\mathbf{f}^{\mathsf{T}}(x_i)\mathbf{M}^{-1}\mathbf{f}(x_i) = \{\mathbf{F}\mathbf{M}^{-1}\mathbf{F}^{\mathsf{T}}\} \le \{\mathbf{W}\}_{ii}$. If $\{\mathbf{F}\mathbf{M}^{-1}\mathbf{F}^{\mathsf{T}}\} = \{\mathbf{W}\}_{ii}$, then $\mathbb{E}[(y_i - \mathbf{F}_i \cdot \hat{\boldsymbol{\theta}})^2] = \mathbb{V}\mathrm{ar}[y_i - \mathbf{F}_i \cdot \hat{\boldsymbol{\theta}}] = 0$, hence

$$y_i = \mathbf{F}_i \cdot \hat{\boldsymbol{\theta}} = \eta(x_i, \hat{\boldsymbol{\theta}}),$$

with probability 1.

Corollary

If $\mathbf{f}^{\mathsf{T}}(x_i)\mathbf{M}^{-1}\mathbf{f}(x_i)$ is close to $\{\mathbf{W}\}_{ii}$, then, even before performing the experiment, we know that the whole estimated regression function is strongly influenced by y_i , even if y_i is an outlier.

Remark

In the case that ${\bf W}={\bf I}$ (case of uncorrelated observations with constant variances), this emphasizes the importance of the use the G-optimality criterion of optimality

$$\max_{x\in\langle a,b\rangle}\mathbf{f}^{\mathsf{T}}(x)\mathbf{M}^{-1}(x_1,\ldots,x_N)\mathbf{f}(x).$$

The minimization of this expression with respect to x_1, \ldots, x_N gives a design which is good not only for the precision of the response function, but also for its robustness with respect to outliers.

In such a simple model as is a polynomial regression on a real line we described three kinds of "strange" design points. So "one can be never too careful" even with linear models.

References

- Harville D.A.: Matrix Algebra from a Statistician's Perspective. Springer, New York, 1997.
- Müller W.G., Pázman A.: Measures for designs in experiments with correlated errors. *Biometrika* **90** (2003), 423–445.
- Pázman A.: Information contained in design points of experiments with correlated observations. *Kybernetika* 46 (2010), 769–781.
- Pázman A., Pronzato L.: On the irregular behaviour of LS estimators for asymptotically singular designs. *Statistics and Probability Letters* 76 (2006), 1089–1096.
- Pukelsheim F.: Optimal Design of Experiments. Wiley, New York, 1993.
- Zvára K.: Regresní analýza. Academie Praha, 1989.