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Introduction

◮ Longitudinal Data
◮ Linear Mixed Model (LMM)
◮ Parameter Estimation

◮ regression parameters
◮ covariance parameters

◮ Problem of the construction of confidence regions for regression
parameters

◮ in small sample case
◮ if it is necessary to estimate also the covariance parameters of the

model
◮ simulation results



Longitudinal data

◮ the defining feature is that measurements of the same subjects
are taken repeatedly through time

◮ obtain vectors Y1, . . . ,YN of repeated measurements on each
subject (i = 1, . . . ,N)

◮ vectors of outcomes are independent between subjects
◮ repeated measurements done on the single subject exhibit some

form of (positive) correlation
◮ the primary goal of a longitudinal study is to characterize the

change on response over time and the factors that influence
change

◮ to describe a common feature which defines the behavior of all
subjects in time - fixed effects

◮ in addition, every subject has some individual effects on his
repeated measurements - individual effects



Linear model model for longitudinal data

◮ for longitudinal data proposed by Laird a Ware (1982)
◮ useful model for such type of data, because it reflects both

-common and individual- effects of each subject on his repeated
measurements

◮ the response vector Yi for i-th subject, (i = 1, . . . , I), can be
written as

Yi = Xiβ + Ziηi + εi

◮ Xi are (ni × p)-dimensional known matrices
◮ β is p-dimensional vector of the unknown regression parameters
◮ - the same for all subjects
◮ - fixed effects
◮ Zi are (ni × r)-dimensional known matrices
◮ ηi are r -dimensional vectors of unknown parameters
◮ - mutually independent
◮ - random vectors from N(0,D)
◮ - random effects of the individuals on their repeated

measurements
◮ εi is ni -dimensional vector of errors for i-th subject
◮ - independent from ηi
◮ - εi ∼ N(0,Ri)
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where each Σi is the covariance matrix for the response vector of the i-th
subject Yi

Var(Yi) = Σi = ZiDZ
′

i + Ri



we assume that the covariance matrix of the random response vector
Y is some known function of r -dimensional vector of parameters θ,
Var (Y) = Σ = Σ(θ)

◮ vector of parameters θ is known, hence the covariance matrix Σ

is also known and providing that there exist the inverse matrix to
it, the estimator of fixed effects is

β̃ =
(

X
′

Σ
−1X

)
−1

X
′

Σ
−1Y

◮ we assume the existence of the matrix (X
′

Σ
−1X)−1 = Φ

◮ such an estimator of fixed effects corresponds to the solution of
the generalized least square method of the estimation of the
unknown regression parameters and with the given assumptions
it is known that (

β̃ − β
)
∼ N

(
0,
(

X
′

Σ
−1X

)
−1

)

◮ best linear unbiased estimator (BLUE) of the vector of fixed effects



Estimation of the unknown covariance parameters

◮ the primary interest in the longitudinal data analysis is to
estimate the unknown fixed effects β

◮ it is often necessary to estimate the unknown covariance
parameters of the model too, θ - nuisance

◮ it is largely used the REML likelihood function, where the logarithm
of REML likelihood function is in form

lREML(θ;Y) = − 1
2 (n − r) ln (2π)− 1

2 ln |Σ(θ)| − 1
2 ln

∣∣X′
Σ

−1(θ)X
∣∣

− 1
2 Y′

{
Σ

−1(θ)−Σ
−1(θ)X

[
X′
Σ

−1(θ)X
]−1

X′
Σ

−1(θ)
}

Y,

where n =
∑I

i=1 ni

◮ for the estimator of covariance parameters θ̂

◮ asymptotically distributed (for n → ∞)(
θ̂ − θ0

)
∼ N (0,W),

where W is the inverse of Fisher information matrix

W =
{

E
[
∂lREML
∂θ

∂lREML

∂θ
′

]}
−1

=
{
−E

[
∂2 lREML

∂θ∂θ
′

]}
−1

and θ0 is the true vector of covariance parameters of the model



Some properties of the estimator of fixed effects

◮ unknown are not only the fixed effects but also the covariance
parameters of the model θ

◮ Σ unknown

◮ we have the REML estimator of the covariance matrix Σ̂ = Σ(θ̂)

◮ a simply approach to get an estimator of the unknown vector of
fixed effectsβ

β̂ =
(

X
′

Σ
−1(θ̂)X

)
−1

X
′

Σ
−1(θ̂)Y

◮ empirical best linear unbiased estimator - EBLUE

◮ is an unbiased estimator of fixed effects of the model β

E
(
β̂
)
= β

◮ the covariance matrix of β̂ is in general not known
◮ often is estimated as

Φ̂ =
(

X
′

Σ
−1(θ̂)X

)
−1



◮ for "small" sample sizes is such an approximation of Var
(
β̂
)

using Φ̂ inappropriate
◮ do not take into account the uncertainty included in the estimating

of unknown covariance parameters of the model θ
◮ Φ̂ is not an unbiased estimator of Φ

◮ Kackar, Harville (1984) showed that the approximate covariance
matrix of the EBLUE of the fixed effects β is

Var
(
β̂
)
= Φ+ Λ1,

where

Λ1 ≈ Φ
{∑r

k=1

∑r
l=1 {W}kl (Qkl − PkΦPl )

}
Φ,

Pk = −X
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Σ

−1X,

Qkl = X
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Σ
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∂θk
Σ

−1 ∂Σ
∂θl

Σ
−1X

◮ is function of the unknown covariance parameters of the model
◮ it is necessary to estimate it

V̂ar
(
β̂
)
= Φ̂+ Λ̂1



◮ Kenward, Roger (1997), based on Harville, Jeske (1992) and
Prasad, Rao (1990), derived an approximation of the matrix

V̂ar
(
β̂
)

such that this estimator includes the bias in Φ̂
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=

Φ̂+ 2Φ̂
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{
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kl
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1
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Φ̂ ≡ Φ̂mod ,
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′

Σ
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[
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Σ
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]
Σ

−1X

◮ this method assumes unbiasedness of the estimator of
covariance parameters of the model θ

◮ REML estimator of covariance parameters is in general not
unbiased

◮ the bias is more significant in the cases which assume nonlinear
structures of the covariance matrix of the response vector Y



◮ Kenward, Roger (2009) derived the bias of the REML estimator
of θ̂

Bias(θ̂k ) = E
[(

θ̂ − θ0

)
k

]
=

− 1
4
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◮ this relationship was included to the method of achieving the
estimator of the covariance matrix of the estimator of fixed effects
from the previous article, what leads to modified estimator of the
covariance matrix of the estimator of fixed effects

V̂ar
(
β̂
)
= Φ̂mod + B̂ ≡ Φ̂

∗

mod1,

where
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Some proposal to improve the previous method

◮ to implement the bias into the methods for obtaining the
covariance matrix of θ̂ given in Kackar, Harville (1984)

◮ by setting the term Λ1
◮ including this bias into the estimator of the covariance matrix β̂ not

only through the correction term B̂ of the matrix Φ̂
∗

mod1 in
comparison to matrix Φ̂mod , but also in the term

2Φ̂
{∑r

k=1

∑r
l=1

{
Ŵ
}

kl

(
Q̂kl − P̂k Φ̂P̂l −

1
4 R̂kl

)}
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◮ omitting the assumption of the unbiasedness of the REML
estimator of the covariance parameters θ

V̂ar(β̂) =
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Confidence regions for the fixed effects

◮ the statistical inference about l linear combinations of the
elements of β

◮ construction of the confidence regions for some linear combinations
L

′

β, where L is some known (p × l)-dimensional matrix

Covariance parameters of the model θ are known

◮ the distribution of the β̃ is known and

χ2 = (L
′

β̃ − L
′

β)
′

(L
′

ΦL)−1(L
′

β̃ − L
′

β)

◮ asymptotically exact confidence regions for Lβ

Covariance parameters θ are unknown

◮ replace θ with its REML estimator θ̂
◮ Φ = (X

′

Σ
−1X)−1 is substituted by Φ̂ = (X

′

Σ̂
−1

X)−1

◮ to trust that χ2
∗
= (L

′

β̂ − L
′

β)
′

(L
′

Φ̂L)−1(L
′

β̂ − L
′

β) has χ2

distribution with l degrees of freedom too
◮ is used in the major part of the basic literature about longitudinal

data
◮ appropriate for "large" sample sizes



◮ in the cases of sufficient sample sizes is previous approach
appropriate

θ is unknown; "small" sample sizes
◮ uncertainty due the estimating of the covariance parameters of

the model θ have to be involved into the inferences about the
elements of β

◮ using appropriate estimator of the covariance matrix of β̂
◮ using F distribution instead of standard χ2 distribution

◮ distribution of

F = 1
l (L

′

β̂ − L
′

β)
′

(L
′

Φ̂
∗

L)−1(L
′

β̂ − L
′

β)

◮ Φ̂
∗

is either the "naive" estimator of the covariance matrix of the
vector of fixed effects of the model Φ̂, or some of its modification,
e.g. Φ̂mod

◮ for l = 1 - Satterthwaite (1941)
◮ for l > 1 - more complex

◮ take into account the random structure of LΦ̂mod L
′

◮ shows to be advantageous to assume Fl,m distribution - number of
degrees of freedom m



Fai-Cornelius method

◮ method to determine the degrees of freedom m
◮ assumption

FFC = 1
l (L

′β̂ − L′β)
′

(L′
Φ̂L)−1(L′β̂ − L′β)

has approximately Fl,m distribution
◮ Fai-Cornelius method use as an estimator of the covariance matrix

of the EBLUE of the fixed effects the matrix Φ̂

◮ using the spectral decomposition of the matrix (L′
Φ̂L)−1

◮ using Satterthwaite approximation

Fai-Cornelius approximative (1 − α) · 100% confidence region
(α ∈ (0, 1)) is such a set of vectors of fixed effects β+, for which

1
l (L

′β̂ − L′β+)
′

(L′
Φ̂L)−1(L′β̂ − L′β+) < Fl,m̂(1 − α),

where Fl,m̂(1 − α) is the (1 − α)-quantile of the Fisher-Snedecor
distribution with l and m̂ degrees of freedom



Kenward-Roger method

◮ method to estimate the number of degrees of freedom m
◮ based on the assumption that

FKR = λ1
l (L

′β̂ − L′β)
′

(L′
Φ̂mod L)−1(L′β̂ − L′β)

has approximately Fl,m distribution
◮ use as an estimator of the covariance matrix of the EBLUE of the

fixed effects the matrix Φ̂mod from Kenward, Roger (1997)
◮ in addition there is some "scale" factor λ - used to be estimated

◮ due the second-order Taylor series expansion of the matrix
(L′

Φ̂modL)−1 around the true vector of covariance parameters of
the model θ0

◮ using this expansion in the calculation of the first and second
moment of the random variable F = 1

λ
FKR

Kenward-Roger approximative (1 − α) · 100% confidence region
(α ∈ (0, 1)) is such a set of vectors of fixed effects β+, for which

λ̂1
l (L

′β̂ − L′β+)
′

(L′
Φ̂mod L)−1(L′β̂ − L′β+) < Fl,m̂(1 − α),

where Fl,m̂(1 − α) is the (1 − α)-quantile of the Fisher-Snedecor
distribution with l and m̂ degrees of freedom



Modified Kenward-Roger method

◮ let us suppose that

F ∗ = λ1
l (L

′β̂ − L′β)
′

(L′
Φ̂mod1L)−1(L′β̂ − L′β)

has approximately Fisher-Snedecor distribution with l and m
degrees of freedom

◮ estimator of the covariance matrix of the EBLUE of the fixed effects
the matrix is Φ̂mod1

◮ based on the Alnosaier (2007) and Kenward, Roger (1997)
where derived relationships to an approximately calculation of
the "scale" factor λ and degrees of freedom m

Modified Kenward-Roger approximative (1 − α) · 100% confidence
region (α ∈ (0, 1)) is such a set of vectors of fixed effects β+, for
which

λ̂1
l (L

′β̂ − L′β+)
′

(L′
Φ̂mod1L)−1(L′β̂ − L′β+) < Fl,m̂(1 − α),

where Fl,m̂(1 − α) is the (1 − α)-quantile of the Fisher-Snedecor
distribution with l and m̂ degrees of freedom



Small simulation study

◮ to compare all mentioned approaches for different numbers of
subjects with 8 repeated measurements on each subject in the
linear mixed model with with AR(1) errors

◮ "small" number of subjects

◮ it were computed the empirical probabilities of coverage of the
real values L

′

β from 10000 simulations of the 95% confidence
regions taken by all mentioned methods



based on the example given in the Zerbe (1979) we considered the
LMM model with

◮ 3-dimensional vector of fixed effects β0 = [4.5,−0.7, 0.3]′

◮ 1-dimensional vector of individual effects ηi ∼ N(0, σ2
η),

i = 1, 2, . . . , I
◮ AR(1) errors

Yi = Xiβ + Ziηi + εi

Xi =
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◮ Zi = [1, 1, 1, 1, 1, 1, 1, 1]′, i = 1, 2, . . . , I
◮ covariance parameters of the model were sets as σ2

0 = 0.16,
σ2
η 0 = 0.25 and AR(1) parameter ρ0 = 0.7
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Conclusion

It turns out that using of the modified Kenward-Roger method
improves the results obtained by the Kenward-Roger method given in
Kenward, Roger (1997) and with the increasing number of subject the
proposed modified Kenward-Roger confidence region is approaching
the theoretical value faster than the Kenward-Roger method. From
the figure it should be also deduced that the modified Kenward-Roger
method gives almost the same results as the Fai-Cornelius method.
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