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Motivation |.
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"quality levels” fuzzy values from [0, 1].
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Motivation |. continued

» Total’ quallty level” of
— —
> is equal to a; A xj = mm(a,-j,xj),
» Total "quality level” of
— — [
» is equal to bjj A yj = min(bjj, x;);
> If — is a two-way street, we have x; = y;.
> Levels x;, y; are bounded variables in [0, 1], i.e
X € [x;, ;] € [0,1], yj € [y, 751 < [0,1].
> fi(x;), gj(y;j) strictly monotone (increasing) or unimodal
penalty functions (expenses).
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Motivation |. - Continued.
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Optimization Problem:

Minimize f(x,y) = max(max;c,(fj(x;)), max;es(gi(y;)))
subject to

maxjcy(aj A xj) Ri maxje (bj Ayj) Viel,

X € X xjs v € by, vl

where R; is equal to one of the relations <, =, >.

» "One sided” constraints of the form:

max(a,-j /\XJ) R; by Viel,
jed

where b; € (0, 1] are given can be obtained as a special case.
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Motivation Il. - Fuzzy Goals

> Let I ={1,...,n}, J={1,...,n};

> Let two groups of m fuzzy sets A;, B; (fuzzy goals) be given;
their membership functions are 11;(j) = ajj, vi(j) = bjj, j € J,
iel;

» We have to find fuzzy set X with membership function
ux(j), j € J, such that certain requirements concerning
A;, B;, and X are fulfilled.

» Besides, we can look for optimal (in some sense) values
ux(j), j € J satifying the requirements.
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Motivation Il. - Fuzzy Goals

> Let for each i € I, pix(j) = aj A x;, V, j€J,
vix(j) = bij A xj, V j € J;

» For each i € /, functions u;x, vix are the membership
functions of the fuzzy intersection of fuzzy sets (A;, X),
(Bj, X) respectively;

» We define for each i € I the heights of functions u;x, vix as
follows:

Hax(n()) = ’}‘eaj((ﬂiX(j));
Hegx(v(j)) = rpeaf(vl'x(j))-

> We will assume that fj(ux(j)),j € J are given continuous
increasing (in px(j) = x;) penalty functions connected with
the choice of ux(j);
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Motivation Il. - Fuzzy Goals - Continued

» Example 1

max £ (jix (7)) — min
jed

» subject to
HA,—X(') > b, Viel,

Hgx(.) > ci, Viel,

where b;, ¢; are given nonnegative numbers.
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Motivation Il. - Fuzzy Goals - Continued

» Example 1 - reformulation

max f;(x;) —— min
max ()
» subject to
max(ajj A xj) > bj,Vi € |
jed
max(bj A xj) > ¢, Vi el
jed

xj€[0,1]VjeJ
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Motivation Il. - Fuzzy Goals - Continued

» Example 2

max £ (jix(j)) — min
jed

» subject to
HA,-X(-) = HB,'X(')? Viel
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Motivation Il. - Fuzzy Set Covering - Continued

» Example 2 - reformulation

>
max f;(x;)) —— min
max £x))
» subject to
r;neaj((a,-j AXj) = ryeaj((a,-j Axj) Viel,

xj €[0,1] ) € J.
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General "Standard” Problem Formulation - Feasible Set.

» J={1,...,n}, I ={1,...,m},
R = (_OO7+OO)a Ry = [07 +OO)7

» R"=Rx---x R (n-times), x = (x1,...,x,) € R",
superscript T means transposition.

> ajj, bj nonnegative Vi € /, j € J are given,

aj(x) = max(aj ox;) forall iel,
Jjed

» where o denotes one of the operations A, +, .;

bi(x) = r}weaj((b,-j oxj) forall iel,

> M(x,X)={x € R"; aj(x) =bi(x) Viel, x<x<X}
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General " Standard” Formulation - Optimization Problem.
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» Minimize f(x) = max;c fi(x;)

» subject to

stk sk sk ok ok ok ok ok ok ok sk s ok ke ok ok sk sk sk ok sk sk ok ok ok sk s ke ok ok ok sk sk sk sk sk sk ok ok sk sk ok ke ok ok sk sk sk sk sk ok ok ok

» where f; : [0,1] — R, j € J are continuous strictly increasing
or unimodal functions.
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Formulation of the Optimization Problem - Continued.

v

In what follows we will consider the case, where 0 = A,
where a A f = min(a, 3).

i. e. we will consider the following problem:

v

v

Minimize f(x) subject to

max(aj A Xj) = maJx(b,-j Nxj) Viel,
j€

<
IN
X
IN
x|
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Properties of the Feasible Set.

» Lemma 1
> (1) Let M(X) = {x € M ; ai(x) = bi(x), Viel, x<Xx}.
Then M(x) # 0.

> (2) If M(x,x) # 0, then there exists always its maximum
element x™®, i.e. there exists an element x™** € M(x, X)
such that x < x™> Vx € M(x,X).

> (3) M(x,x) # 0 if and only if x < x™2*,

» Remark

» There exists a polynomial (O(n%)) algorithm for finding x™2
(see [Gavalec, Zimmermann, Kybernetika 2010 ]).
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General Iteration Scheme - Application to

(max, min)-linear Problems.

We apply the general iteration scheme to the problem
» Minimize f(x)
» subject to
> x € M(x, x).
>

Karel Zimmermann Properties and Applications of (max,min)-linear Equations and



Proposal of an Iteration Scheme - ALGORITHM 1.

ALGORITHM 1.

@ f = f(x), f:=f(x);

Find the maximum element x™®* of set M(X);

If x £ x™*, then M(x,x) =0, STOP;

o= f(x™), f(a) = f, f(a):= f(x™>);

o 1= f(a) + (F(a) — £())/2, set Xj(a) = f; (o) ¥j € J ;
Find x™(a) € M(x(c));

@ If x £ x™*(«), set f(a) := « go to ;

If £(x™(0)) — £() < €, set x(e)%* := x™>(a), STOP.

f(a) = f(x™*(a)), go to ;
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Extensions, Further Research.

>

For (max, +)-linear or (max, .)-linear problems only
pseudopolynomial algorithms [Bezem et al.].

» (min, max)- , (min, +)- or (min,.)-linear problems by analogy.

» For minimizing function f(x) under one-sided constraints

maxjcy(aj A xj) Ri bj Vi € I, there exists an exact algorithm
see [Zimmermann, K. Theoretical computer Science
293(2003), pp.45 - 54].

Exact (polynomial) optimization algorithms using the
structure of the two-sided constraints is the subject of further
research.

Problems with objective function f(x) and linear or convex
constraints of the form: M(x,x) N K, where

K ={x; gi(x1,...,xn) > 0}, where g;, i € | are concave
functions and gj are strictly increasing in all variables

xj, J=1,...,n.
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