

Streamlining the Applied Mathematics Studies at Faculty of Science of Palacký University in Olomouc CZ.1.07/2.2.00/15.0243

INVESTMENTS
IN EDUCATION
DEVELOPMENT

International Conference Olomoucian Days of Applied Mathematics

ODAM 2011

Department of Mathematical analysis and Applications of Mathematics

Faculty of Science Palacký University Olomouc

Properties and Applications of (max,min)-linear Equations and Inequalities..

Karel Zimmermann

January 25, 2011

CONTENT:

- ▶ Introduction
- Possible Applications Motivating Examples
- ▶ Problem Formulation General Scheme
- ▶ Generalizations and Further Research
- ▶ References.

Motivation I.

- $\blacktriangleright \ \boxed{\mathsf{T}} \quad \longrightarrow \quad \boxed{\mathsf{j}} \quad \longrightarrow \quad \boxed{\mathsf{i}}$
- $ightharpoonup i \in I, j \in J, I, J \text{ finite index sets,}$
- ightharpoonup "quality level" a_{ij} of $\boxed{\mathrm{i}} \longrightarrow \boxed{\mathrm{j}}$
- "quality level" b_{ij} of j \longrightarrow i,
- ▶ "quality level" $x_j = ?$ of $\boxed{\mathsf{j}} \longrightarrow \boxed{\mathsf{T}}$
- ightharpoonup "quality level" $y_j = ?$ of $\begin{tabular}{|c|c|c|c|c|} \hline T & \longrightarrow & \hline j \end{tabular}$
- ▶ "quality levels" fuzzy values from [0, 1].

Motivation I. continued

- $\begin{array}{c|c} \blacksquare & \text{Total "quality level" of} \\ \hline [i] & \longrightarrow & [j] & \longrightarrow & \boxed{T}, \end{array}$
- ▶ is equal to $a_{ij} \wedge x_j \equiv \min(a_{ij}, x_j)$;
- ▶ is equal to $b_{ij} \wedge y_j \equiv \min(b_{ij}, x_j)$;
- ▶ If j \longrightarrow T is a two-way street, we have $x_j = y_j$.
- ▶ Levels x_j , y_j are bounded variables in [0,1], i.e. $x_j \in [\underline{x}_j, \overline{x}_j] \subset [0,1]$, $y_j \in [\underline{y}_j, \overline{y}_j] \subset [0,1]$.
- ▶ $f_j(x_j)$, $g_j(y_j)$ strictly monotone (increasing) or unimodal penalty functions (expenses).

Motivation I. - Continued.

- **▶** Optimization Problem:
- ▶ Minimize $f(x, y) \equiv \max(\max_{j \in J} (f_j(x_j)), \max_{j \in J} (g_j(y_j)))$
- ▶ subject to
- ▶ $\max_{j \in J} (a_{ij} \land x_j) R_i \max_{j \in J} (b_{ij} \land y_j) \forall i \in I$,
- $\blacktriangleright \ x_j \in [\underline{x}_j, \overline{x}_j], \ y_j \in [\underline{y}_j, \overline{y}_j].$
- ▶ where R_i is equal to one of the relations \leq , =, \geq .
- "One sided" constraints of the form:

$$\max_{j\in J}(a_{ij}\wedge x_j)\ R_i\ b_i\ \forall i\in I,$$

where $b_i \in (0,1]$ are given can be obtained as a special case.

Motivation II. - Fuzzy Goals

- ▶ Let $I = \{1, ..., n\}, J = \{1, ..., n\};$
- ▶ Let two groups of m fuzzy sets A_i , B_i (fuzzy goals) be given; their membership functions are $\mu_i(j) = a_{ij}$, $\nu_i(j) = b_{ij}$, $j \in J$, $i \in I$;
- ▶ We have to find fuzzy set X with membership function $\mu_X(j)$, $j \in J$, such that certain requirements concerning A_i , B_i , and X are fulfilled.
- ▶ Besides, we can look for optimal (in some sense) values $\mu_{x}(j), j \in J$ satisfying the requirements.

Motivation II. - Fuzzy Goals

- ▶ Let for each $i \in I$, $\mu_{iX}(j) = a_{ij} \land x_j$, \forall , $j \in J$, $\nu_{iX}(j) = b_{ij} \land x_j$, \forall $j \in J$;
- ▶ For each $i \in I$, functions μ_{iX} , ν_{iX} are the membership functions of the fuzzy intersection of fuzzy sets (A_i, X) , (B_i, X) respectively;
- ▶ We define for each $i \in I$ the heights of functions μ_{iX} , ν_{iX} as follows:

$$H_{A_iX}(\mu(j)) \equiv \max_{j \in J} (\mu_{iX}(j)),$$

$$H_{B_iX}(\nu(j)) \equiv \max_{j \in J} (\nu_{iX}(j)).$$

▶ We will assume that $f_j(\mu_X(j)), j \in J$ are given continuous increasing (in $\mu_X(j) = x_j$) penalty functions connected with the choice of $\mu_X(j)$;

Motivation II. - Fuzzy Goals - Continued

► Example 1

$$\max_{j \in J} f_j(\mu_X(j)) \longmapsto \min$$

subject to

$$H_{A_iX}(.) \ge b_i, \ \forall i \in I,$$

 $H_{B_iX}(.) \ge c_i, \ \forall i \in I,$

where b_i , c_i are given nonnegative numbers.

Motivation II. - Fuzzy Goals - Continued

► Example 1 - reformulation

$$\max_{j\in J} f_j(x_j) \longmapsto \min$$

subject to

$$\max_{j \in J} (a_{ij} \wedge x_j) \ge b_i, \forall i \in I$$
 $\max_{j \in J} (b_{ij} \wedge x_j) \ge c_i, \forall i \in I$
 $x_j \in [0,1] \ \forall j \in J$

Motivation II. - Fuzzy Goals - Continued

► Example 2

$$\max_{j \in J} f_j(\mu_X(j)) \longmapsto \min$$

subject to

$$H_{A_iX}(.) = H_{B_iX}(.), \forall i \in I$$

Motivation II. - Fuzzy Set Covering - Continued

► Example 2 - reformulation

$$\max_{j\in J} f_j(x_j))\longmapsto \min$$

subject to

$$\max_{j \in J} (a_{ij} \wedge x_j) = \max_{j \in J} (a_{ij} \wedge x_j) \ \forall i \in I,$$
$$x_j \in [0, 1] \ \forall j \in J.$$

General "Standard" Problem Formulation - Feasible Set.

- ▶ $J = \{1, ..., n\}, I = \{1, ..., m\},$ $R = (-\infty, +\infty), R_+ = [0, +\infty),$
- ▶ $R^n = R \times \cdots \times R$ (*n*-times), $x^T = (x_1, \dots, x_n) \in R^n$, superscript T means transposition.
- ▶ a_{ij} , b_{ij} nonnegative $\forall i \in I$, $j \in J$ are given,

$$a_i(x) \equiv \max_{j \in J} (a_{ij} \circ x_j) \text{ for all } i \in I,$$

• where o denotes one of the operations \wedge , +, .;

$$b_i(x) \equiv \max_{j \in J} (b_{ij} \circ x_j) \text{ for all } i \in I,$$

 $M(\underline{x}, \overline{x}) \equiv \{x \in R^n ; \ a_i(x) = b_i(x) \ \forall i \in I, \ \underline{x} \le x \le \overline{x} \}$

General "Standard" Formulation - Optimization Problem.

- ******************
 - ▶ Minimize $f(x) \equiv \max_{j \in J} f_j(x_j)$
- subject to

- $ightharpoonup x \in M(\underline{x}, \overline{x}).$
- ***************
- ▶ where $f_j : [0,1] \to R$, $j \in J$ are continuous strictly increasing or unimodal functions.

Formulation of the Optimization Problem - Continued.

- ▶ In what follows we will consider the case, where $o = \land$, where $\alpha \land \beta \equiv \min(\alpha, \beta)$.
- ▶ i. e. we will consider the following problem:
- Minimize f(x) subject to

$$\max(a_{ij} \wedge x_j) = \max_{j \in J} (b_{ij} \wedge x_j) \ \forall i \in I,$$

$$\underline{x} \le x \le \overline{x}$$

Properties of the Feasible Set.

- ▶ Lemma 1
- ▶ (1) Let $M(\overline{x}) \equiv \{x \in M : a_i(x) = b_i(x), \forall i \in I, x \leq \overline{x}\}$. Then $M(\overline{x}) \neq \emptyset$.
- ▶ (2) If $M(\underline{x}, \overline{x}) \neq \emptyset$, then there exists always its maximum element x^{\max} , i.e. there exists an element $x^{\max} \in M(\underline{x}, \overline{x})$ such that $x < x^{\max} \quad \forall x \in M(x, \overline{x})$.
- ▶ (3) $M(\underline{x}, \overline{x}) \neq \emptyset$ if and only if $\underline{x} \leq x^{\text{max}}$.
- Remark
- ► There exists a polynomial $(O(n^3))$ algorithm for finding x^{max} (see [Gavalec, Zimmermann, Kybernetika 2010]).

General Iteration Scheme - Application to (max, min)-linear Problems.

We apply the general iteration scheme to the problem

- ► Minimize f(x)
- subject to
- $x \in M(\underline{x}, \overline{x}).$

Proposal of an Iteration Scheme - ALGORITHM I.

ALGORITHM I.

- $0 \underline{f} := f(\underline{x}), \overline{f} := f(\overline{x});$
- 1 Find the maximum element x^{\max} of set $M(\overline{x})$;
- 2 If $\underline{x} \not\leq x^{\text{max}}$, then $M(\underline{x}, \overline{x}) = \emptyset$, STOP;
- 3 $\alpha := f(x^{\text{max}}), \underline{f}(\alpha) := \underline{f}, \overline{f}(\alpha) := f(x^{\text{max}});$
- $\boxed{4} \quad \alpha := \underline{f}(\alpha) + (\overline{f}(\alpha) \underline{f}(\alpha))/2, \text{ set } \overline{x}_j(\alpha) := f_j^{-1}(\alpha) \ \forall j \in J ;$
- 5 Find $x^{\max}(\alpha) \in M(\overline{x}(\alpha))$;
- 6 If $\underline{x} \not\leq x^{\max}(\alpha)$, set $\underline{f}(\alpha) := \alpha$ go to 4;
- 7 If $f(x^{\max}(\alpha)) \underline{f}(\alpha) < \epsilon$, set $x(\epsilon)^{opt} := x^{\max}(\alpha)$, STOP.
- 8 $\overline{f}(\alpha) := f(x^{\max}(\alpha))$, go to 4;

Extensions, Further Research.

- ► For (max, +)-linear or (max, .)-linear problems only pseudopolynomial algorithms [Bezem et al.].
- \blacktriangleright (min, max)- , (min, +)- or (min, .)-linear problems by analogy.
- ▶ For minimizing function f(x) under one-sided constraints $\max_{j \in J} (a_{ij} \land x_j) R_i b_i \ \forall i \in I$,, there exists an exact algorithm see [Zimmermann, K. Theoretical computer Science 293(2003), pp.45 54].
- Exact (polynomial) optimization algorithms using the structure of the two-sided constraints is the subject of further research.
- ▶ Problems with objective function f(x) and linear or convex constraints of the form: $M(\underline{x}, \overline{x}) \cap K$, where $K = \{x \; ; \; g_i(x_1, \ldots, x_n) \geq 0\}$, where $g_i, \; i \in I$ are concave functions and g_i are strictly increasing in all variables $x_j, \; j = 1, \ldots, n$.

References

- Bezem, M., Nieuwenhuis, R., Rodríguez-Carbonell, E.: Exponential Behaviour of the Butkovič Zimmermann Algorithm for Solving Two-sided Linear Systems in Max-algebra, Discrete Applied Mathematics, 156(2008), pp. 3506-3509.
- Blagajewicz, M.: A New Approach for Global Optimization of MINLP Problems, contribution ALIO-INFORMS Joint International Meeting, June 2010, Buenos Aires.
- Gavalec, M., Zimmermann, K.: Solving Systems of Two-sided (max,min)-linear Equations, Kybernetika, 46 (2010), 405-414.
- Zimmermann, K.: Disjunctive Optimization Problems, Max-separable Problems and Extremal Algebras, Theoretical Computer Science, 293(2003), pp. 45 54.

Karel Zimmermann Charles University Prague Faculty of Mathematics and Physics Department of Applied Mathematics Malostranské náměstí 25 CZ - 118 00 Praha 1 Karel Zimmermann@mff.cuni.cz