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Pairwise Comparison Matrix PCM

ASSUMPTIONS

Set of alternatives
X = {x1, . . . , xn}

Pairwise comparison matrix (PCM)

A = (aij)n×n

where aij > 0 is a multiplicative estimation of the degree of
preference of xi over xj
aii = 1 ∀i
aijaji = 1 ∀i, j (reciprocity)
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A = (aij) is consistent if and only if the decision maker is
perfectly coherent (cardinal transitivity).

Formally:

aik = aijajk ∀i, j, k

direct comparison aik confirm indirect comparison aijajk
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Pairwise Comparison Matrices

Characterization of a consistent Pairwise Comparison Matrix

A matrix A = (aij) is consistent if and only if it exists a positive
vector w = (w1, ..., wn) such that

aij =
wi

wj
∀i, j

Example
consistent matrix

A =

 1 2 4
1/2 1 2
1/4 1/2 1


each column of A is a suitable vector w
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Pairwise Comparison Matrices

Non consistent Pairwise Comparison Matrix

THE PROBLEM OF (IN)CONSISTENCY EVALUATION

There is a complete agreement on the definition of consistency

aik = aijajk (1)

What if a PCM A = (aij) is not consistent?

aik 6= aijajk

A = (aij) can be close or far to consistency.
Objective: to evaluate ‘how much’ the pairwise comparison
matrix deviates from full consistency condition (1)
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Pairwise Comparison Matrices

Relevance of Consistency Evaluation

Why it is important to correctly evaluate inconsistency?

Consistent judgements are related with their reliability
the more consistent the judgements are, the more likely it is that
the decision maker

is a good expert
has a deep insight into the problem
pays the due attention in eliciting his/her preferences

If judgments are far from consistency, it is likely that the decision
maker expressed them with scarce competence and care
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Pairwise Comparison Matrices

Some (in)consistency indices

Consistency Index (CI); Saaty – 1977
Geometric Consistency Index (GCI); Crawford, Williams – 1985
Golden, Wang – 1989
Koczkodaj – 1993
Relative Error; Barzilai – 1998
Shiraishi, Obata, Daigo – 1998
Peláez , Lamata – 2003
Harmonic Consistency Index (HCI); Stein, Mizzi – 2007
Cavallo, D’Apuzzo – 2009
Ramík , Korviny – 2010
............
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Pairwise Comparison Matrices

Addressed problem

How to give a general characterization to inconsistency ?

Proposal: to characterize inconsistency as a distance from
consistency

But ... the notion of distance is too general

Distances induced by norms have several interesting properties
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Pairwise Comparison Matrices

Additive representation of preferences

It is convenient to change the representation of preferences from the
multiplicative to the additive one

multiplicative estimation of the degree of preference of xi over xj
aij > 0
aii = 1 ∀i
aijaji = 1 ∀i, j multiplicative reciprocity
aik = aijajk ∀i, j, k multiplicative consistency
additive estimation of the degree of preference of xi over xj
aij ∈ R
aii = 0 ∀i
aij + aji = 0 ∀i, j additive reciprocity: A is skew–symmetric
aik = aij + ajk ∀i, j, k additive consistency

with the ln(·) function it is possible to pass from the
multiplicative to the additive representation. It is a group
isomorphism (R+, ·) 7→ (R,+).
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Pairwise Comparison Matrices

Convenience in using additive representation of preferences

It allows us using the powerful tools of Linear Algebra
vector (sub)space
affine subspace
norm
scalar product
orthogonal projection

Michele Fedrizzi, Nino Civolani, Andrew Critch

Inconsistency evaluation and norm – induced metrics



Introduction: Consistency evaluation Equivalence Classes for Inconsistency Inconsistency Index as a distance

Pairwise Comparison Matrices

Convenience in using additive representation of preferences

It allows us using the powerful tools of Linear Algebra

vector (sub)space
affine subspace
norm
scalar product
orthogonal projection

Michele Fedrizzi, Nino Civolani, Andrew Critch

Inconsistency evaluation and norm – induced metrics



Introduction: Consistency evaluation Equivalence Classes for Inconsistency Inconsistency Index as a distance

Pairwise Comparison Matrices

Convenience in using additive representation of preferences

It allows us using the powerful tools of Linear Algebra
vector (sub)space

affine subspace
norm
scalar product
orthogonal projection

Michele Fedrizzi, Nino Civolani, Andrew Critch

Inconsistency evaluation and norm – induced metrics



Introduction: Consistency evaluation Equivalence Classes for Inconsistency Inconsistency Index as a distance

Pairwise Comparison Matrices

Convenience in using additive representation of preferences

It allows us using the powerful tools of Linear Algebra
vector (sub)space
affine subspace

norm
scalar product
orthogonal projection

Michele Fedrizzi, Nino Civolani, Andrew Critch

Inconsistency evaluation and norm – induced metrics



Introduction: Consistency evaluation Equivalence Classes for Inconsistency Inconsistency Index as a distance

Pairwise Comparison Matrices

Convenience in using additive representation of preferences

It allows us using the powerful tools of Linear Algebra
vector (sub)space
affine subspace
norm

scalar product
orthogonal projection

Michele Fedrizzi, Nino Civolani, Andrew Critch

Inconsistency evaluation and norm – induced metrics



Introduction: Consistency evaluation Equivalence Classes for Inconsistency Inconsistency Index as a distance

Pairwise Comparison Matrices

Convenience in using additive representation of preferences

It allows us using the powerful tools of Linear Algebra
vector (sub)space
affine subspace
norm
scalar product

orthogonal projection

Michele Fedrizzi, Nino Civolani, Andrew Critch

Inconsistency evaluation and norm – induced metrics



Introduction: Consistency evaluation Equivalence Classes for Inconsistency Inconsistency Index as a distance

Pairwise Comparison Matrices

Convenience in using additive representation of preferences

It allows us using the powerful tools of Linear Algebra
vector (sub)space
affine subspace
norm
scalar product
orthogonal projection

Michele Fedrizzi, Nino Civolani, Andrew Critch

Inconsistency evaluation and norm – induced metrics



Introduction: Consistency evaluation Equivalence Classes for Inconsistency Inconsistency Index as a distance

Matrices as points in vector spaces

Vector spaces of preference matrices

Consider:

Rn×n the space of n× n real matrices

L = {A = (aij)n×n| aij + aji = 0, i, j = 1, ..., n}
the set of pairwise comparison matrices in the additive
representation (skew–symmetric matrices) is a linear subspace
of Rn×n

L∗ = {A ∈ L| aij + ajk = aik , i, j, k = 1, . . . , n}
the set of consistent matrices is a linear subspace of L
(Koczkodaj and Orlowski, Comp. Math. Appl. 1997)
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of Rn×n

L∗ = {A ∈ L| aij + ajk = aik , i, j, k = 1, . . . , n}
the set of consistent matrices is a linear subspace of L
(Koczkodaj and Orlowski, Comp. Math. Appl. 1997)
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Partition into Equivalence Classes

The linear subspace of consistent matrices L∗ naturally induces a
partition of L into equivalence classes

Equivalence Relation

A ∼ B⇔ B−A ∈ L∗ A,B ∈ L

The quotient space L/L∗ = L/∼ contains the equivalence classes
[A].
Each equivalence class [A] is obtained by adding to a matrix A ∈ L
an arbitrary consistent matrix

Equivalence Class

[A] = {A+C, C ∈ L∗}

Therefore, [A] is an affine subspace of L
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Introduction: Consistency evaluation Equivalence Classes for Inconsistency Inconsistency Index as a distance

Matrices as points in vector spaces

Equivalence classes: affine subspaces

affine subspace
[A] = A+ L∗
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Introduction: Consistency evaluation Equivalence Classes for Inconsistency Inconsistency Index as a distance

Inconsistency evaluation through norm – induced distances

Inconsistency Index

Assumption:

Consistent matrices

A ∈ L∗ ⇒ I(A) = 0

Therefore, it is natural to assign the same inconsistency value I(A) to
all matrices in an equivalence class:

Consistency Index for Equivalence Classes

A,B ∈ [A]⇒ I(B) = I(A) (2)

How to obtain (2)?
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Introduction: Consistency evaluation Equivalence Classes for Inconsistency Inconsistency Index as a distance

Inconsistency evaluation through norm – induced distances

Inconsistency Index as a distance from L∗ – general case

A matrix A is a point in the space L

I(A) is defined as the distance of A from the closest consistent
matrix

Id(A) = d(A,L∗) = minB∈L∗ d(A,B)
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Introduction: Consistency evaluation Equivalence Classes for Inconsistency Inconsistency Index as a distance

Inconsistency evaluation through norm – induced distances

Remark

The notion of distance is too general
It can lead to unsatisfactory inconsistency measures (Fichtner –
1984)

Definition: norm – induced distance

d(A,B) = ||A−B||

Id(A) = d(A,L∗) = minB∈L∗ ||A−B||
then every A ∈ [A] has the same distance from L∗ i.e. the same
inconsistency Id(A)
(see theorem 2 in the following)
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Introduction: Consistency evaluation Equivalence Classes for Inconsistency Inconsistency Index as a distance

Inconsistency evaluation through norm – induced distances

Characterizing properties of a norm

Recall ...
1 ||x|| ≥ 0 ∀x
2 ||x|| = 0⇔ x = 0

3 ||kx|| = |k| ||x|| for any scalar k (positive homogeneity)
4 ||x+ y|| ≤ ||x||+ ||x|| (triangle inequality)

If property 2 is removed, we obtain a seminorm

Michele Fedrizzi, Nino Civolani, Andrew Critch

Inconsistency evaluation and norm – induced metrics



Introduction: Consistency evaluation Equivalence Classes for Inconsistency Inconsistency Index as a distance

Inconsistency evaluation through norm – induced distances

Characterizing properties of a norm

Recall ...

1 ||x|| ≥ 0 ∀x
2 ||x|| = 0⇔ x = 0

3 ||kx|| = |k| ||x|| for any scalar k (positive homogeneity)
4 ||x+ y|| ≤ ||x||+ ||x|| (triangle inequality)

If property 2 is removed, we obtain a seminorm

Michele Fedrizzi, Nino Civolani, Andrew Critch

Inconsistency evaluation and norm – induced metrics



Introduction: Consistency evaluation Equivalence Classes for Inconsistency Inconsistency Index as a distance

Inconsistency evaluation through norm – induced distances

Characterizing properties of a norm

Recall ...
1 ||x|| ≥ 0 ∀x
2 ||x|| = 0⇔ x = 0

3 ||kx|| = |k| ||x|| for any scalar k (positive homogeneity)
4 ||x+ y|| ≤ ||x||+ ||x|| (triangle inequality)

If property 2 is removed, we obtain a seminorm

Michele Fedrizzi, Nino Civolani, Andrew Critch

Inconsistency evaluation and norm – induced metrics



Introduction: Consistency evaluation Equivalence Classes for Inconsistency Inconsistency Index as a distance

Inconsistency evaluation through norm – induced distances

Characterizing properties of a norm

Recall ...
1 ||x|| ≥ 0 ∀x
2 ||x|| = 0⇔ x = 0

3 ||kx|| = |k| ||x|| for any scalar k (positive homogeneity)
4 ||x+ y|| ≤ ||x||+ ||x|| (triangle inequality)

If property 2 is removed, we obtain a seminorm

Michele Fedrizzi, Nino Civolani, Andrew Critch

Inconsistency evaluation and norm – induced metrics



Introduction: Consistency evaluation Equivalence Classes for Inconsistency Inconsistency Index as a distance

Inconsistency evaluation through norm – induced distances

Theorem 1 (Seminorm)

If d is induced by a norm, then Id(A) is a seminorm on L:

1 Id(A) ≥ 0 ∀A ∈ L
2 Id(kA) = |k|Id(A) ∀A ∈ L, ∀k ∈ R
3 Id(A+A′) ≤ Id(A) + Id(A

′) ∀A,A′ ∈ L .
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Introduction: Consistency evaluation Equivalence Classes for Inconsistency Inconsistency Index as a distance

Inconsistency evaluation through norm – induced distances

Theorem 2

Id(A) is invariant with respect to addition of a consistent matrix

Id(A) = Id(A+B) ∀B ∈ L∗ (3)

If
d(A,L∗) = d(A,A∗),

i.e. A∗ ∈ L∗ minimizes the distance of A from L∗, then, by
adding a consistent matrix B ∈ L∗ it is

d(A+B,L∗) = d(A+B,A∗ +B),

i.e. (A∗ +B) ∈ L∗ minimizes the distance of A+B from L∗
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Introduction: Consistency evaluation Equivalence Classes for Inconsistency Inconsistency Index as a distance

Inconsistency evaluation through norm – induced distances

Comments

Theorem 2 extends a theorem by Crawford e Williams (J. Math.
Psyc. 1985 – geometric mean)
Remark: since they use multiplicative representation, they prove
invariance with respect to Hadamard (componentwise) product
A ·B instead that to the addition A+B

It follows that every A ∈ [A] has the same distance from L∗ and
therefore the same inconsistency,

A,B ∈ [A] =⇒ Id(A) = Id(B). (4)

semantic: inconsistency doesn’t change by adding consistent
preferences
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Corollary
The function Id : L/L∗ → R, defined as follows

Id([A]) = Id(A), A ∈ [A], (5)

is a norm on L/L∗ .

Only the equivalence class L∗ of consistent matrices has zero –
inconsistency
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Orthogonal decomposition – extension of Barzilai (JMCDA 1998)

Assume that the norm derives from an Inner Product,

||A|| =
√
< A,A >

then, it is possible to consider the orthogonal complement L⊥ of
L∗

L⊥ = {A ∈ L|A ⊥ L∗}

L is the direct sum of L⊥ and L∗,

L = L∗ ⊕ L⊥. (6)

where

L∗ is the set (linear space) of consistent matrices

L⊥ is the set of totally inconsistent matrices
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Inconsistency evaluation through norm – induced distances

matrix decomposition

A = C+E,
where C ∈ L∗ is the consistent part of A
and and E ∈ L⊥ is the inconsistent part of A
C ⊥ E < C,E >= 0
decomposition is unique

Note that all the inconsistency of A is due to E

Id(A) = Id(C+E) = Id(E)

C is the orthogonal projection of A on L∗ (see projection
theorem)
semantic: it is possible to separate and to highlight the consistent
and the inconsistent part of preferences
Barzilai’s orthogonal decomposition refers to the Euclidean norm
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Inconsistency evaluation through norm – induced distances

Characterizing properties for an inconsistency index

If the norm defining Id(A) = minB∈L∗ ||A−B|| is permutation
invariant, then Id(A) satisfies the five characterizing properties
introduced by Brunelli and Fedrizzi – ISAHP 2011
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Inconsistency evaluation through norm – induced distances

Property 1

Existence of a single value of I(A) for every consistent matrix

∃! ν ∈ R | I(A) = ν ⇔ A ∈ L∗

In our case it is
Id(A) = 0⇔ A ∈ L∗

Michele Fedrizzi, Nino Civolani, Andrew Critch

Inconsistency evaluation and norm – induced metrics



Introduction: Consistency evaluation Equivalence Classes for Inconsistency Inconsistency Index as a distance

Inconsistency evaluation through norm – induced distances

Property 1

Existence of a single value of I(A) for every consistent matrix

∃! ν ∈ R | I(A) = ν ⇔ A ∈ L∗

In our case it is
Id(A) = 0⇔ A ∈ L∗

Michele Fedrizzi, Nino Civolani, Andrew Critch

Inconsistency evaluation and norm – induced metrics



Introduction: Consistency evaluation Equivalence Classes for Inconsistency Inconsistency Index as a distance

Inconsistency evaluation through norm – induced distances

Property 2

I(A) is invariant with respect to alternatives permutations

Formally

I(PAPT ) = I(A)

for any permutation matrix P.
Since the norm ||A−B|| is assumed to be permutation invariant,
then property 2 is satisfied
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Inconsistency evaluation through norm – induced distances

Property 3

Monotonicity of I(A) with respect to the preference intensifying
transformation f(aij) = kaij , k > 1

Underlying idea:
if preferences are intensified, then an inconsistency index cannot
return a better value
Why?

if all the expressed preferences indicates indifference between
alternatives, aij = 0 ∀i, j they are consistent
going further from this uniformity means having stronger
judgments
possible characteristics like inconsistency are made more evident
Note that f(aij) = kaij is the unique transformation which
preserves reciprocity
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Property 3 – Formalization

For every PCM A = (aij) and k > 1, it is

I(A) ≤ I(Â)

where Â = (kaij)
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Inconsistency evaluation through norm – induced distances

Property 4

Monotonicity of I(A) with respect to the modification of a single
element of a consistent matrix

Premise
Consider a consistent PCM A ∈ L∗

choose one of its non-diagonal entries apq
By increasing or decreasing the value of apq, and modify its
reciprocal aqp accordingly, then the resulting matrix is not
anymore consistent.

The idea underlying (P4)
the larger the change of apq, the more inconsistent becomes the
matrix
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Property 4 – Example

Example
modifying a consistent matrix A ∈ L∗

A =

 0 2 4
−2 0 2
−4 −2 0



A′ =

 0 2 5
−2 0 2
−5 −2 0

 A′′ =

 0 2 6
−2 0 2
−6 −2 0


then I(A) ≤ I(A′) ≤ I(A′′)
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Property 5 Continuity

Any inconsistency index I(A) must be a continuous function of
the matrix elements.
Continuity of Id(A) = minB∈L∗ ||A−B|| directly follows from
continuity of each norm with respect to the induced topology
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Inconsistency evaluation through norm – induced distances

Boundary property for group decision making

k = 1, ...m decision makers
m PCMs Ak = (akij)

Question: Is it possible to give an upper bound to the
inconsistency of the aggregated (group) preferences?
aggregation method: Dijkstra (2012) proved that the weighted
geometric mean is the unique method that guarantees some
important properties of the group preferences in the multiplicative
approach
In the additive approach this corresponds to a linear combination

aGij =
m∑

k=1

λk(a
k
ij) i, j = 1, ..., n (7)

AG =

m∑
k=1

λkA
k (8)
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Inconsistency evaluation through norm – induced distances

Result on group inconsistency

An inconsistency index Id(A) defined as a norm–based distance
satisfies the upper boundary property

I(AG) ≤
m∑

k=1

λkI(A
k),

where the group PCM AG is obtained by means of the linear
combination corresponding to λ1, ..., λm
A weaker property has been studied and proved, for example, for
Saaty’s CI:

I(AG) ≤ max{I(A1), ..., I(Am)}
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Final remarks

CRUCIAL POINTS
additive representation of preferences
The choice of distances induced by norms
Id(A) = minB∈L∗ ||A−B||
Norms are a very general and flexible notion.
Example: for p–norms

||x|| =

 n∑
j=1

|xj |p
 1

p

p ≥ 1

different values of p produce different evaluations. Opportunity of
suitable choices of p.
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Thanks for attention
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