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Capacitated Vehicle Routing Problem

I We have a depot
I

I
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Introduction
Capacitated Vehicle Routing Problem

We want to select routes for vehicles, such that

I the total travel time is minimized

I all customer demands are satisfied
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Introduction
Capacitated Vehicle Routing Problem

Some assumptions/constraints:

I Customers do not tolerate incomplete/partial deliveries
I We can not split deliveries (e.g. we must visit each customer once)
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Introduction
Vehicle Routing Problem with Uncertain Travel Costs

What is uncertainty?

Shortly: inability to know the problem data exactly.

Let us consider uncertainty in travel costs.

In the reality, it is difficult to know them exactly, because of:

I measurement errors
I unforeseen factors

I traffic jams
I unfriendly weather conditions
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Introduction
Vehicle Routing Problem with Uncertain Travel Costs

Ignoring uncertainty can lead to undesired situations

An optimal solution according to the mathematical model can turn
out to be suboptimal / impractical.
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Introduction
Vehicle Routing Problem with Uncertain Travel Costs

Let us accept the presence of uncertainty.

Note that no probability distribution is not known in our model.
We have intervals representing possible travel costs:
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Introduction
Robust Optimization

What is Robust Optimization?

I Name given to methodologies which handle optimization
problems with uncertain data 1 2 3 4

I Purpose: find a practical solution which does not “go bad”
because of uncertain data

1A.L. Soyster. Convex programming with set-inclusive constraints and
applications to inexact linear programming.
Operations Research, 21(5):1154–1157, 1973

2L. El Ghaoui, F. Oustry, and H. Lebret. Robust solutions to uncertain
semidefinite programs.
SIAM Journal on Optimization, 9(1):33–52, 1998

3A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear
programs.
Operations Research Letters, 25(1):1–13, 1999

4D. Bertsimas and M. Sim. Robust discrete optimization and network flows.
Mathematical Programming, 98(1):49–71, 2003
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Introduction
Motivation of the Study

In this study,

I We want to solve capacitated vehicle routing problem with
uncertain travel costs.

I We take a metaheuristic approach
I to find near-optimal solutions in a practical amount of time

We incorporate robust optimization into an ant colony system
metaheuristic.
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The Solution Approach
The Ant Colony System

What is Ant Colony Optimization 5 6 ?

I A metaheuristic optimization algorithm class

I Developed for solving combinatorial optimization problems like
traveling salesman problem

I Inspired by the behavior of the ants in the nature

5M. Dorigo, V. Maniezzo, and A. Colorni. Positive feedback as a search
strategy.
Technical Report 91-016, Dipartimento di Elettronica, Politecnico di Milano,
1991

6M. Dorigo. Learning and Natural Algorithms.
PhD thesis, Politecnico di Milano, 1992
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The Solution Approach
The Ant Colony System

What is ant colony system ?

I An ant colony optimization variation

I Each iteration sends multiple ants in parallel (10 in our
case)

I Elitism: only the best ant is allowed to put pheromones
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The Solution Approach
The Ant Colony System

On larger instances, these can be observed:

I The best solution changes over time
I Various paths are marked with pheromones of various

strengths
29 / 49



The Solution Approach
Robust Objective Function

We use the robust optimization approach of Bertsimas & Sim 7 8

Bertsimas & Sim approach:

I can be configured in terms of conservativeness
I How much robust/protective do we want to be?

I computational complexity stays linear if the original problem is
linear

I Not expensive: possible to efficiently embed into a
metaheuristic

7D. Bertsimas and M. Sim. Robust discrete optimization and network flows.
Mathematical Programming, 98(1):49–71, 2003

8D. Bertsimas and M. Sim. The price of robustness.
Operations Research, 52(1):35–53, 2004
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The Solution Approach
Robust Objective Function

Let us suppose we have this objective function:
Minimize the cost:
c1x1 + c2x2 + c3x3 + c4x4 + c5x5

Decision variables being xn ∈ {0, 1}

Let us now assume that there is uncertainty: cn ∈ [cn; cn]

I If everything goes optimistically (best case): cn = cn
I In the worst case: cn = cn

An easy-to-apply method is to be fully protective
(Soyster method 9)
Minimize c1x1 + c2x2 + c3x3 + c4x4 + c5x5 (over-conservative)

9A.L. Soyster. Convex programming with set-inclusive constraints and
applications to inexact linear programming.
Operations Research, 21(5):1154–1157, 1973
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The Solution Approach
Robust Objective Function

In Bertsimas & Sim approach, we can be partially protective

I Can be configured by a parameter Γ.

Danger posed by a coefficient: c̃n = (cn − cn) · xn
e.g. if c̃1 > c̃2 then c1 is more dangerous than c2.

If conservativeness parameter Γ = 2:

I Most dangerous 2 coefficients are assumed to be in their
upper bounds

I The rest are assumed to be in their lower bounds

For example Γ = 2 and we have a solution χ.
If c3 and c5 are the two most dangerous coefficients:
SolutionCost(χ) = c1x1 + c2x2 + c3x3 + c4x4 + c5x5
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The Solution Approach
Robust Objective Function

Let us now apply Bertsimas & Sim approach to our problem.

How to calculate the cost of a solution?
Notation:

I V : set of vehicles

I sol : solution

I solv : set of locations visited by vehicle v

I solvk : k-th visited place by vehicle v according to sol

I cij : cost of arc (i , j)

If we had no uncertainty:

SolutionCost(sol) =
∑
v∈V

|solv |∑
k=2

csolvk−1,sol
v
k
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The Solution Approach
Robust Objective Function

With uncertainty:
RobustCost(sol , Γ) =

max

{∑
v∈V

|solv |∑
k=2

csolvk−1,sol
v
k

+ γsolvk−1,sol
v
k

(csolvk−1,sol
v
k
− csolvk−1,sol

v
k

)

}

s.t.
∑

(i ,j)∈A

γij ≤ Γ

0 ≤ γij ≤ 1 ∀(i , j) ∈ A

That is, the assumed cost is the maximum possible cost given that Γ
coefficients will be maximized.

Algorithmically equivalent:
− Sort all the arcs in the solution from biggest cost uncertainty to
smallest cost uncertainty
− Assume that the first Γ coefficients are at their highest values

− Assume that the rest are at their lowest values

34 / 49
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Experimental Results
Experimental Setup

Experimental setup:
I Intel Core 2 Duo P9600 @ 2.66GHz with 4GB of RAM

I Algorithm based on the code 10, written in C

I Tried on popular instances: tai100{a,b,c,d}, tai150{a,b,c,d}
I Instances modified to have interval travel cost data

Experiments:
I Computational price of robustness

I How slower we get when we consider the uncertainty in
objective function

I Operational price of robustness
I How is the potential cost of a solution affected by the

conservativeness

10L.M. Gambardella, É Taillard, and G. Agazzi. New Ideas in Optimization,
chapter “MACS-VRPTW: A Multiple Ant Colony System for Vehicle Routing
Problems with Time Windows”, pages 63–76.
McGraw-Hill, 1999
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Experimental Results
Computational Price of Robustness

Iterations completed within 10 seconds

The robust ant colony system is slower

I half the speed of the deterministic ant colony system
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Experimental Results
Operational Price of Robustness

Now we analyze the effects of conservatism (Γ) on the solutions.

The analysis is done according to two axis:

I Conservatism (Γ): What was the conservatism configuration
during the optimization process

I Assumption (Υ): How well the solution performs if we
assume a real scenario where Υ number of most dangerous
coefficients are perturbed towards their highest values.

I We solved each instance with different conservatism levels to
generated solution pools

I Each solving operation takes 3 minutes

I For having reliable solution pools, the best of 12 runs were
taken
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Experimental Results
Operational Price of Robustness

Solution pool for tai150a
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Experimental Results
Operational Price of Robustness

Similar results were found on other instances.
Instance Solution Cost evaluations

Γ Υ=0 Υ=10 Υ=25 Υ=50 Υ=75 Υ=101

0 2059.3 2262.51 2385.58 2483.72 2527.28 2542.42
10 2067.02 2214.54 2319.65 2413.89 2464.96 2484.68

tai100a 25 2075.1 2217.22 2314.17 2407.53 2456.8 2477.0
50 2100.52 2234.9 2332.78 2405.9 2440.32 2453.49
75 2105.73 2229.88 2316.01 2390.74 2428.53 2444.34

101 2110.14 2242.17 2331.53 2405.37 2440.95 2455.19
0 2059.3 2262.51 2385.58 2483.72 2527.28 2542.42

10 2067.02 2214.54 2319.65 2413.89 2464.96 2484.68
tai100b 25 2075.1 2217.22 2314.17 2407.53 2456.8 2477.0

50 2100.52 2234.9 2332.78 2405.9 2440.32 2453.49
75 2105.73 2229.88 2316.01 2390.74 2428.53 2444.34

101 2110.14 2242.17 2331.53 2405.37 2440.95 2455.19
0 1406.2 1574.7 1669.28 1725.35 1750.76 1762.02

10 1421.6 1540.59 1623.88 1676.82 1700.11 1710.43
tai100c 25 1442.17 1539.99 1603.83 1657.4 1682.63 1694.73

50 1463.51 1564.07 1621.19 1665.74 1687.35 1697.2
75 1447.11 1557.79 1620.49 1668.53 1694.19 1707.81

101 1463.25 1554.89 1606.65 1654.52 1677.93 1688.95
0 1596.31 1736.59 1835.16 1921.65 1969.65 1986.28

10 1607.26 1721.96 1812.32 1904.64 1954.99 1973.84
tai100d 25 1604.11 1712.9 1802.47 1888.03 1932.95 1948.57

50 1629.59 1737.5 1810.49 1884.54 1927.25 1943.91
75 1606.7 1728.08 1817.47 1894.48 1930.1 1944.75

101 1668.21 1750.43 1821.35 1887.88 1925.2 1938.9
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Experimental Results
Operational Price of Robustness

Similar results were found on other instances.
Instance Solution Cost evaluations

Γ Υ=0 Υ=10 Υ=20 Υ=30 Υ=50 Υ=75 Υ=100 Υ=125 Υ=151

0 3057.94 3390.46 3538.96 3615.69 3707.36 3763.75 3797.9 3815.98 3825.48
10 3097.5 3277.93 3382.75 3450.47 3542.32 3609.26 3648.49 3669.62 3679.91
20 3118.97 3270.62 3353.47 3411.85 3492.84 3547.98 3584.12 3604.21 3614.06
30 3156.47 3294.29 3371.55 3423.79 3490.68 3543.25 3579.6 3598.69 3608.56

tai150a 50 3149.19 3298.85 3382.76 3433.91 3502.35 3555.47 3589.55 3607.79 3615.42
75 3129.4 3310.89 3400.62 3453.07 3517.03 3562.12 3587.66 3602.02 3610.41
100 3142.33 3305.57 3386.24 3441.66 3514.01 3564.67 3597.65 3616.71 3627.67
125 3131.15 3304.53 3384.42 3432.99 3495.98 3544.47 3576.53 3593.37 3602.18
151 3171.07 3340.74 3424.33 3470.37 3528.64 3573.75 3601.08 3617.73 3626.56
0 2739.21 3069.54 3198.94 3274.44 3359.1 3418.57 3453.35 3474.16 3484.27
10 2766.41 2921.46 2986.57 3028.48 3085.07 3131.84 3161.56 3179.8 3189.79
20 2832.26 2948.69 3000.81 3039.63 3096.09 3141.99 3170.57 3186.99 3195.47
30 2828.24 2931.2 2985.24 3029.07 3091.45 3142.14 3173.95 3193.3 3202.86

tai150b 50 2778.8 2904.21 2955.55 2992.29 3044.94 3091.15 3120.9 3137.98 3146.97
75 2799.36 2919.01 2973.59 3013.9 3070.32 3118.89 3151.56 3171.03 3180.76
100 2825.5 2925.73 2979.14 3016.48 3072.69 3123.69 3156.0 3175.6 3185.57
125 2792.57 2912.71 2962.05 2998.15 3050.61 3096.77 3127.12 3144.79 3153.86
151 2845.26 2957.83 3021.25 3061.43 3110.56 3148.17 3172.65 3188.03 3196.82
0 2424.0 2710.5 2835.77 2891.73 2948.93 2991.88 3019.11 3035.43 3044.21
10 2498.13 2657.34 2751.06 2811.87 2878.65 2925.59 2952.89 2969.05 2976.76
20 2524.18 2671.85 2719.62 2752.32 2799.04 2839.41 2867.92 2885.6 2894.25
30 2484.0 2629.85 2671.19 2703.18 2752.03 2795.3 2824.23 2841.68 2851.8

tai150c 50 2508.54 2632.85 2695.3 2733.76 2780.41 2818.37 2840.73 2855.34 2862.65
75 2469.62 2577.21 2626.77 2658.43 2703.07 2741.03 2765.74 2780.03 2787.32
100 2459.48 2616.64 2688.32 2730.48 2788.26 2831.81 2858.76 2874.55 2881.33
125 2515.31 2639.38 2691.0 2724.58 2771.67 2809.58 2833.72 2849.56 2856.55
151 2532.29 2657.48 2702.28 2732.72 2778.58 2818.02 2842.06 2858.33 2867.75
0 2662.84 2932.68 3075.43 3143.09 3226.07 3280.73 3311.14 3326.35 3333.13
10 2700.91 2884.32 2983.02 3050.67 3133.85 3192.25 3224.2 3242.3 3251.39
20 2750.85 2913.03 2987.75 3043.98 3118.76 3168.32 3196.22 3212.07 3219.87
30 2768.92 2903.33 2971.89 3020.14 3088.88 3143.1 3178.74 3198.66 3207.74

tai150d 50 2739.32 2889.63 2949.71 2994.59 3054.79 3102.39 3131.79 3148.18 3156.05
75 2809.45 2924.43 2986.61 3024.55 3082.63 3132.18 3163.69 3182.11 3190.63
100 2737.14 2929.63 2997.12 3035.84 3089.46 3132.93 3157.66 3172.01 3179.5
125 2754.36 2915.53 2979.61 3027.07 3089.16 3136.65 3164.26 3179.6 3186.36
151 2776.35 2928.92 2993.73 3033.26 3084.55 3123.54 3148.25 3163.04 3169.71
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Conclusions

Some conclusions:

I An ant colony system was improved to consider uncertainty

I The robust version of ant colony system now allows the
decision maker to generate a solution pool containing
solutions of different conservativeness levels

Future work:

I Handle time window constraints with uncertainty
considerations
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