evropský sociální fond $v$ ČR


Streamlining the Applied Mathematics Studies at Faculty of Science of Palacký University in Olomouc CZ.1.07/2.2.00/15.0243

## International Conference Olomoucian Days of Applied Mathematics

## ODAM 2013

OP Vzdělávání pro konkurenceschopnost

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Department of Mathematical analysis and Applications of Mathematics
Faculty of Science
Palacký Univerzity Olomouc

## The product space $\mathcal{T}$ (tools for compositional data with a total)

V. Pawlowsky-Glahn ${ }^{1}$; J. J. Egozcue ${ }^{2}$; D. Lovell ${ }^{3}$

${ }^{1}$ Dept. Informàtica i Matemàtica Aplicada, U. de Girona, España (e-mail: vera.pawlowsky@udg.edu)
Past-President - International Association for Mathematical Geosciences
${ }^{2}$ Dept. Mat. Aplicada III, U. Politècnica de Catalunya, Barcelona, España
${ }^{3}$ CSIRO Mathematics, Informatics and Statistics, Canberra, Australia
Olomoucian Days of Applied Mathematics (ODAM) 2013 Olomouc, Česká republika, June 12-14, 2013

## phytoplankton abundances: an example

- 173 samples, 8 taxa (cyanobacteria), period of 14 years

- groups: $\mathrm{B}=$ before 1998; $\mathrm{A}=$ after 1998; joint group $=\mathrm{BA}$


## background

- compositional data analysis deals with relative information between parts
- the total (abundances, mass, amount, ...) is in general not known or not informative
- when interest lies in analysing a composition for which the total is known and of interest, data are usually analysed as elements of $\mathbb{R}_{+}^{D} \subset \mathbb{R}^{D}$ or of $\mathbb{R}_{+} \times \mathcal{S}^{D}=\mathcal{T} \subset \mathbb{R}^{D}$


## questions

- is there a Euclidean space structure of $\mathbb{R}_{+}^{D}$ and of $\mathbb{R}_{+} \times \mathcal{S}^{D}=\mathcal{T}$ ?
- if so, which is the relationship between the two spaces?
- which total is coherent with the representation in $\mathcal{S}^{D}$ ?


## assumptions

- the Aitchison geometry is valid in the $D$-part simplex

$$
\mathcal{S}^{D}=\left\{\left[x_{1}, x_{2}, \ldots, x_{D}\right] \in \mathbb{R}_{+}^{D} \mid x_{i}>0, \sum_{i=1}^{D} x_{i}=\kappa\right\} \subset \mathbb{R}_{+}^{D}
$$

- the log-geometry is valid in $\mathbb{R}_{+}$, i.e. a log-transformed component of $\mathbb{R}_{+}$corresponds to a Euclidean coordinate
- the total of $\mathbf{w} \in \mathbb{R}_{+}^{D}$ is a function, $t(\mathbf{w})$, of its components


## procedure and goal

- induce a Euclidean space structure in both spaces through the product space
- study forms of total for inducing isomorphism and/or isometry between $\mathbb{R}_{+}^{D}$ and $\mathcal{T}$


## Euclidean space structure of $\mathbb{R}_{+}^{D}$

notation: w, $\mathbf{v} \in \mathbb{R}_{+}^{D}, \alpha \in \mathbb{R}$
plus-perturbation (Abelian inner group operation in $\mathbb{R}_{+}^{D}$ )

$$
\mathbf{w} \oplus_{+} \mathbf{v}=\left[w_{1} \cdot v_{1}, w_{2} \cdot v_{2}, \ldots, w_{D} \cdot v_{D}\right]
$$

plus-powering (external multiplication in $\mathbb{R}_{+}^{D}$ )

$$
\alpha \odot_{+} \mathbf{w}=\left[w_{1}^{\alpha}, w_{2}^{\alpha}, \ldots, w_{D}^{\alpha}\right]
$$

plus-inner-product

$$
\langle\mathbf{w}, \mathbf{v}\rangle_{+}=\langle\lg \mathbf{w}, \lg \mathbf{v}\rangle
$$

plus-distance and plus-norm

$$
d_{+}(\mathbf{w}, \mathbf{v})=d(\lg \mathbf{w}, \lg \mathbf{v}) ; \quad\|\mathbf{w}\|_{+}=\|\lg \mathbf{w}\|
$$

## properties of $\left(\mathbb{R}_{+}^{D}, \oplus_{+}, \odot_{+},\langle,\rangle_{+}\right)$

notation: $\mathbf{w}, \mathbf{v} \in \mathbb{R}_{+}^{D} ; \alpha \in \mathbb{R} ; \mathcal{C} \mathbf{w}=\mathbf{x}, \mathcal{C} \mathbf{v}=\mathbf{y} \in \mathcal{S}^{D} ; \mathbf{g}_{\mathrm{m}} \mathbf{w}=\left(\prod_{i=1}^{D} w_{i}\right)$
$\oplus_{+} \quad \bullet$ associative and commutative

- neutral element (identity): $\mathbf{n}_{+}=[1,1, \ldots, 1]$
- inverse element: $\ominus_{+} \mathbf{w}=\left[1 / w_{1}, 1 / w_{2}, \ldots, 1 / w_{D}\right]$
$\odot_{+} \quad$ - distributive with respect to the vector group operation

$$
\alpha \odot_{+}\left(\mathbf{w} \oplus_{+} \mathbf{v}\right)=\left(\alpha \odot_{+} \mathbf{w}\right) \oplus_{+}\left(\alpha \odot_{+} \mathbf{v}\right)
$$

- distributive with respect to field addition

$$
(\alpha+\beta) \odot_{+} \mathbf{w}=\left(\alpha \odot_{+} \mathbf{w}\right) \oplus_{+}\left(\beta \odot_{+} \mathbf{w}\right)
$$

- compatible with field multiplication

$$
\alpha \odot_{+}\left(\beta \odot_{+} \mathbf{w}\right)=(\alpha \cdot \beta) \odot_{+} \mathbf{w}
$$

- identity element: $1 \odot_{+} \mathbf{w}=\mathbf{w}$
$\langle,\rangle_{+} \quad \bullet\langle\mathbf{w}, \mathbf{v}\rangle_{+}=\langle\mathbf{x}, \mathbf{y}\rangle_{a}+D \lg \left(\mathrm{~g}_{\mathrm{m}} \mathbf{w}\right) \cdot \lg \left(\mathrm{g}_{\mathrm{m}} \mathbf{v}\right)$
$d_{+}^{2}(,) \quad \bullet d_{+}^{2}(\mathbf{w}, \mathbf{v})=d_{a}^{2}(\mathbf{x}, \mathbf{y})+D \lg ^{2}\left(\frac{\mathrm{~g}_{\mathbf{m}} \mathbf{w}}{\mathrm{g}_{\mathrm{m}} \mathbf{v}}\right)$


## Euclidean space structure of $\mathbb{R}_{+} \times \mathcal{S}^{D}=\mathcal{T}$

notation: $\mathbf{w} \in \mathbb{R}_{+}^{D}, t(\mathbf{w}) \in \mathbb{R}_{+}, \mathcal{C} \mathbf{w}=\mathbf{x} \in \mathcal{S}^{D}, \tilde{\mathbf{x}}=(t(\mathbf{w}), \mathbf{x}) \in \mathcal{T}, \alpha \in \mathbb{R}$
$t(\mathbf{w})$ is a total (abundance, mass); it can be the sum, product, arithmetic or geometric mean, a single component, ...
$\mathcal{T}$-perturbation (Abelian inner group operation in $\mathcal{T}$ )

$$
\begin{aligned}
\tilde{\mathbf{x}} \oplus_{T} \tilde{\mathbf{y}} & =\left(t(\mathbf{w}) \oplus_{+} t(\mathbf{v}), \mathbf{x} \oplus_{a} \mathbf{y}\right) \\
& =\left[t(\mathbf{w}) \cdot t(\mathbf{v}), \mathcal{C}\left[x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{D} y_{D}\right]\right]
\end{aligned}
$$

$\mathcal{T}$-powering (external multiplication in $\mathcal{T}$ )

$$
\alpha \odot_{T} \tilde{\mathbf{x}}=\left(\alpha \odot_{+} t(\mathbf{w}), \alpha \odot_{a} \mathbf{x}\right)=\left[t(\mathbf{w})^{\alpha}, \mathcal{C}\left[x_{1}^{\alpha}, x_{2}^{\alpha}, \ldots, x_{D}^{\alpha}\right]\right]
$$

$\mathcal{T}$-inner-product $\langle\tilde{\mathbf{x}}, \tilde{\mathbf{y}}\rangle_{T}=\langle t(\mathbf{w}), t(\mathbf{v})\rangle_{+}+\langle\mathbf{x}, \mathbf{y}\rangle_{a}$

## properties of $\left(\mathcal{T}, \oplus_{T}, \odot_{T},\langle,\rangle_{T}\right)$

(a) (associative) $\left(\tilde{\mathbf{x}} \oplus_{T} \tilde{\mathbf{y}}\right) \oplus_{T} \tilde{\mathbf{z}}=\tilde{\mathbf{x}} \oplus_{T}\left(\tilde{\mathbf{y}} \oplus_{T} \tilde{\mathbf{z}}\right)$
(b) (commutative) $\tilde{\mathbf{x}} \oplus_{T} \tilde{\mathbf{y}}=\tilde{\mathbf{y}} \oplus_{T} \tilde{\mathbf{x}}$
(c) (neutral element) $\tilde{\mathbf{x}} \oplus_{T} \tilde{\mathbf{n}}=\tilde{\mathbf{x}}$, with $\tilde{\mathbf{n}}=[1, \mathcal{C}[1,1, \ldots, 1]]$
(d) (opposite element) opposite of $\tilde{\mathbf{x}}=\left[t(\mathbf{w}), x_{1}, x_{2}, \ldots, x_{D}\right]$,

$$
\ominus_{T} \tilde{\mathbf{x}}=\left[\frac{1}{t(\mathbf{w})}, \mathcal{C}\left[\frac{1}{x_{1}}, \frac{1}{x_{2}}, \ldots, \frac{1}{x_{D}}\right]\right]=(-1) \odot_{T} \tilde{\mathbf{x}}
$$

(e) (distributive) $\alpha \odot_{T}\left(\tilde{\mathbf{x}} \oplus_{T} \tilde{\mathbf{y}}\right)=\left(\alpha \odot_{T} \tilde{\mathbf{x}}\right) \oplus_{T}\left(\alpha_{\odot_{T}} \tilde{\mathbf{y}}\right)$
(f) (unit) $1 \odot_{T} \tilde{\mathbf{x}}=\tilde{\mathbf{x}}$

## inner product and squared distance

$$
\begin{gathered}
\langle\tilde{\mathbf{x}}, \tilde{\mathbf{y}}\rangle_{T}=\lg (t(\mathbf{w})) \cdot \lg (t(\mathbf{v}))+\langle\mathbf{x}, \mathbf{y}\rangle_{a} \\
d_{T}^{2}(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})=d_{+}^{2}(t(\mathbf{w}), t(\mathbf{v}))+d_{a}^{2}(\mathbf{x}, \mathbf{y})=\lg ^{2} \frac{t(\mathbf{w})}{t(\mathbf{v})}+d_{a}^{2}(\mathbf{x}, \mathbf{y})
\end{gathered}
$$

## the total as a power of the product and as the sum of components

$h: \mathbb{R}_{+}^{D} \rightarrow \mathcal{T}=\mathbb{R}_{+} \times \mathcal{S}^{D}$ such that

$$
\begin{aligned}
& h_{p}(\mathbf{w})=\left(t_{p}(\mathbf{w}), \mathcal{C} \mathbf{w}\right) \quad h_{s}(\mathbf{w})=\left(t_{s}(\mathbf{w}), \mathcal{C} \mathbf{w}\right) \\
& =\left(\left(\prod_{i=1}^{D} w_{i}\right)^{\delta}, \mathcal{C} \mathbf{w}\right) \\
& =\left(\sum_{i=1}^{D} w_{i}, \mathcal{C} \mathbf{w}\right) \\
& h_{p} \text { is one-to-one } \\
& \text { (key for the proof: } \mathrm{g}_{\mathrm{m}} \mathbf{X}=\mathrm{g}_{\mathrm{m}} \mathbf{w} /\left(\sum_{i} w_{i}\right) \text { ) } \\
& h_{p}\left(\mathbf{w} \oplus_{+} \mathbf{v}\right)=h_{p}(\mathbf{w}) \oplus_{T} h_{p}(\mathbf{v}) \\
& h_{s}\left(\mathbf{w} \oplus_{+} \mathbf{v}\right) \neq h_{s}(\mathbf{w}) \oplus_{T} h_{s}(\mathbf{v}) \\
& h_{p}\left(\alpha \odot_{+} \mathbf{w}\right)=\alpha \odot_{T} h_{p}(\mathbf{w}) \quad h_{s}\left(\alpha \odot_{+} \mathbf{w}\right) \neq \alpha \odot_{T} h_{s}(\mathbf{w})
\end{aligned}
$$

$h_{p}$ is an isomorphism
$h_{s}$ is not an isomorphism

## distance properties

inequalities:

$$
\begin{gathered}
d_{+}^{2}(\mathbf{w}, \mathbf{v})=d_{a}^{2}(\mathbf{x}, \mathbf{y})+D \lg ^{2}\left[\frac{\mathrm{~g}_{\mathrm{m}} \mathbf{w}}{\mathrm{~g}_{\mathrm{m}}}\right] \quad \Rightarrow d_{+} \geq d_{a} \\
d_{T}^{2}(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})=d_{a}^{2}(\mathbf{x}, \mathbf{y})+\lg ^{2} \frac{t(\mathbf{w})}{t(\mathbf{v})}=d_{+}^{2}(\mathbf{w}, \mathbf{v})+\lg ^{2} \frac{t(\mathbf{w})}{t(\mathbf{v})}-D \lg ^{2}\left[\frac{\mathrm{~g}_{\mathrm{m}} \mathbf{w}}{\mathrm{~g}_{\mathrm{m}} \mathbf{v}}\right]
\end{gathered}
$$

consequence: for $t=t_{p}$

- $\delta=1 / \sqrt{D} \Rightarrow d_{T}^{2}=d_{+}^{2}$
- $\delta>1 / \sqrt{D} \Rightarrow d_{T}^{2}>d_{+}^{2}$
- $\delta<1 / \sqrt{D} \Rightarrow d_{T}^{2}<d_{+}^{2}$


## general result:

$h: \mathbb{R}_{+}^{D} \rightarrow \mathcal{T}$, with $t_{p}(\mathbf{w})=\left(\Pi_{i} w_{i}\right)^{1 / \sqrt{D}}, \mathbf{x}=\mathcal{C} \mathbf{w}$, is an isometry

## induced structure in $\mathbb{R}_{+}^{D}$ by $\mathcal{T}_{s}=\mathbb{R}_{+} \times \mathcal{S}^{D}$ (with the total = sum)

consider $h: \rightarrow \mathbb{R}_{+}^{D} \rightarrow \mathcal{T}_{s}=\mathbb{R}_{+} \times \mathcal{S}^{D}$ such that $h(\mathbf{w})=\left(t_{s}(\mathbf{w}), \mathcal{C} \mathbf{w}\right)=\left(t_{s}(\mathbf{w}), \mathbf{x}\right)=\tilde{\mathbf{x}}$, $h(\mathbf{v})=\left(t_{s}(\mathbf{v}), \mathcal{C} \mathbf{v}\right)=\left(t_{s}(\mathbf{v}), \mathbf{y}\right)=\tilde{\mathbf{y}}$

- Abelian group operation:

$$
\mathbf{w} \oplus_{+s} \mathbf{v}=h^{-1}\left(h(\mathbf{w}) \oplus_{T} h(\mathbf{v})\right)=\left[\ldots, \frac{t_{s}(\mathbf{w}) t_{s}(\mathbf{v})}{\sum_{j=1}^{D} x_{j} y_{j}} x_{i} y_{i}, \ldots\right]
$$

- external multiplication:

$$
\alpha \odot_{+s} \mathbf{w}=h^{-1}\left(\alpha \odot_{T} h(\mathbf{w})\right)=\left[\ldots, \frac{t_{s}(\mathbf{w})^{\alpha}}{\sum_{j=1}^{D} x_{j}^{\alpha}} x_{i}^{\alpha}, \ldots\right]
$$

- squared distance:

$$
d_{+s}^{2}(\mathbf{w}, \mathbf{v})=d_{T}^{2}(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})=\ln ^{2}\left(t_{s}(\mathbf{w}) / t_{s}(\mathbf{v})\right)+d_{a}^{2}(\mathbf{x}, \mathbf{y})
$$

## phytoplankton abundances in a river

|  | Mvar | centre in $\mathbb{R}_{+}^{D}$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbb{R}_{+}^{D}, \mathcal{T}_{p}$ | $t_{s}$ | $t_{p}$ | ana | aph | ocy | aug | aud | act | ank | cry |
| B | 7.268 | 4244 | 7573866 | 627 | 491 | 94 | 2373 | 67 | 193 | 287 | 111 |
| A | 6.867 | 7530 | 69151799 | 957 | 671 | 856 | 3597 | 108 | 320 | 715 | 305 |
| BA | 8.705 | 6079 | 32945104 | 830 | 604 | 408 | 3129 | 92 | 270 | 526 | 218 |
|  | Mvar | centres in $\mathcal{T}$ |  |  |  |  |  |  |  |  |  |
|  | $\mathcal{T}_{\text {s }}$ | $t_{s}$ | $t_{p}$ | ana | aph | ocy | aug | aud | act | ank | cry |
| B | 6.039 | 5456 | 7573866 | . 148 | . 116 | . 022 | . 559 | . 016 | . 046 | . 068 | . 026 |
| A | 5.311 | 9654 | 69151799 | . 127 | . 089 | . 114 | . 478 | . 014 | . 043 | . 095 | . 041 |
| BA | 6.241 | 7973 | 32945104 | . 137 | . 099 | . 067 | . 515 | . 015 | . 045 | . 087 | . 036 |

centres and metric variances for $A, B$, and $B A$ samples;

$$
t_{s}=\sum_{i=1}^{D} w_{i} ; \quad t_{p}=\left(\prod_{i=1}^{D} w_{i}\right)^{1 / \sqrt{D}}
$$

## biplots in $\mathbb{R}_{+}^{D}$ and $\mathcal{T}=\mathbb{R}_{+} \times \mathcal{S}^{D}$




## biplots in $\mathcal{T}=\mathbb{R}_{+} \times \mathcal{S}^{D}$




## working in $\mathbb{R}_{+}^{D}$ and $\mathcal{T}=\mathbb{R}_{+} \times \mathcal{S}^{D}$

- allows easy comparison of structure and metrics
- the total as product of components leads to an isomorphism; the total as the product powered to $1 / \sqrt{ } D$ leads to an isometry
- the total as sum of components does not lead to an isomorphism; if the relevant total is the sum, it is not reasonable to work in $\mathbb{R}_{+}^{D}$ taking logarithms of the components

