

**** * * EVROPSKÁ UNIE

OP Vzdělávání pro konkurenceschopnost

> INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Streamlining the Applied Mathematics Studies at Faculty of Science of Palacký University in Olomouc CZ.1.07/2.2.00/15.0243

International Conference Olomoucian Days of Applied Mathematics

ODAM 2013

Department of Mathematical analysis and Applications of Mathematics Faculty of Science Palacký Univerzity Olomouc

introduction	\mathbb{R}^{D}_{+} 00	total oo	induced structure ○	example	conc o

The product space \mathcal{T} (tools for compositional data with a total)

V. Pawlowsky-Glahn¹; J. J. Egozcue²; D. Lovell³

¹Dept. Informàtica i Matemàtica Aplicada, U. de Girona, España (e-mail: vera.pawlowsky@udg.edu) **Past-President – International Association for Mathematical Geosciences**

²Dept. Mat. Aplicada III, U. Politècnica de Catalunya, Barcelona, España

³CSIRO Mathematics, Informatics and Statistics, Canberra, Australia

Olomoucian Days of Applied Mathematics (ODAM) 2013 Olomouc, Česká republika, June 12–14, 2013

(日) (日) (日) (日) (日) (日) (日)

introduction	\mathbb{R}^{D}_{+}	total	induced structure	example	conc
000					

phytoplankton abundances: an example

• 173 samples, 8 taxa (cyanobacteria), period of 14 years

groups: B = before 1998; A = after 1998; joint group = BA

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

introduction ○●○	\mathbb{R}^{D}_{+}	total oo	induced structure	example 000	o conc

background

- compositional data analysis deals with relative information between parts
- the total (abundances, mass, amount, ...) is in general not known or not informative
- when interest lies in analysing a composition for which the total is known and of interest, data are usually analysed as elements of ℝ^D₊ ⊂ ℝ^D or of ℝ₊ × S^D = T ⊂ ℝ^D

questions

- is there a Euclidean space structure of ℝ^D₊ and of ℝ₊ × S^D = T?
- if so, which is the relationship between the two spaces?
- which total is coherent with the representation in S^D?

introduction	\mathbb{R}^{D}_{+}	total	induced structure	example	conc
000					

assumptions

• the Aitchison geometry is valid in the D-part simplex

$$\mathcal{S}^{D} = \left\{ [x_1, x_2, \dots, x_D] \in \mathbb{R}^{D}_+ \ \middle| \ x_i > 0, \sum_{i=1}^{D} x_i = \kappa \right\} \subset \mathbb{R}^{D}_+$$

- the log-geometry is valid in ℝ₊, i.e. a log-transformed component of ℝ₊ corresponds to a Euclidean coordinate
- the total of $\mathbf{w} \in \mathbb{R}^{D}_{+}$ is a function, $t(\mathbf{w})$, of its components

procedure and goal

- induce a Euclidean space structure in both spaces through the product space
- study forms of total for inducing isomorphism and/or isometry between \mathbb{R}^{D}_{+} and \mathcal{T}

000 0 00 00 00 00 0	introduction	\mathbb{R}^{D}_{+}	total	induced structure	example	conc
		●Ō				

Euclidean space structure of \mathbb{R}^{D}_{+}

notation: $\mathbf{w}, \mathbf{v} \in \mathbb{R}^{D}_{+}, \alpha \in \mathbb{R}$

(日) (日) (日) (日) (日) (日) (日)

plus-perturbation (Abelian inner group operation in \mathbb{R}^{D}_{+})

$$\mathbf{w} \oplus_+ \mathbf{v} = [w_1 \cdot v_1, w_2 \cdot v_2, \dots, w_D \cdot v_D]$$

plus-powering (external multiplication in \mathbb{R}^{D}_{+})

$$\alpha \odot_+ \mathbf{w} = [\mathbf{w}_1^{\alpha}, \mathbf{w}_2^{\alpha}, \dots, \mathbf{w}_D^{\alpha}]$$

plus-inner-product

$$\langle \mathbf{w}, \mathbf{v} \rangle_{+} = \langle \lg \mathbf{w}, \lg \mathbf{v} \rangle$$

plus-distance and plus-norm

$$d_{+}\left(\mathbf{w},\mathbf{v}
ight)=d\left(\lg\mathbf{w},\lg\mathbf{v}
ight); \quad \left\Vert\mathbf{w}
ight\Vert_{+}=\left\Vert\lg\mathbf{w}
ightert$$

000 00 00 00 00 00 0	introduction	\mathbb{R}^{D}_{+}	total	induced structure	example	conc
		00				

properties of
$$(\mathbb{R}^{D}_{+}, \oplus_{+}, \odot_{+}, \langle, \rangle_{+})$$

 \oplus +

 \odot_{\perp}

 \langle,\rangle_+

notation: $\mathbf{w}, \mathbf{v} \in \mathbb{R}^{D}_{+}$; $\alpha \in \mathbb{R}$; $\mathcal{C}\mathbf{w} = \mathbf{x}, \mathcal{C}\mathbf{v} = \mathbf{y} \in \mathcal{S}^{D}$; $g_{\mathrm{m}}\mathbf{w} = \left(\prod_{i=1}^{D} w_{i}\right)^{1/D}$

- associative and commutative
 - neutral element (identity): $\mathbf{n}_+ = [1, 1, \dots, 1]$
 - inverse element: $\ominus_+ \mathbf{w} = [1/w_1, 1/w_2, \dots, 1/w_D]$
- distributive with respect to the vector group operation
 α ⊙₊ (**w** ⊕₊ **v**) = (α ⊙₊ **w**) ⊕₊ (α ⊙₊ **v**)

• distributive with respect to field addition $(\alpha + \beta) \odot_+ \mathbf{w} = (\alpha \odot_+ \mathbf{w}) \oplus_+ (\beta \odot_+ \mathbf{w})$

• compatible with field multiplication

$$\alpha \odot_+ (\beta \odot_+ \mathbf{W}) = (\alpha \cdot \beta) \odot_+ \mathbf{W}$$

identity element: 1 ⊙₊ w = w

•
$$\langle \mathbf{w}, \mathbf{v} \rangle_+ = \langle \mathbf{x}, \mathbf{y} \rangle_a + D \lg(g_m \mathbf{w}) \cdot \lg(g_m \mathbf{v})$$

$$\mathcal{D}_{+}^{2}(,)$$
 • $d_{+}^{2}(\mathbf{w},\mathbf{v}) = d_{a}^{2}(\mathbf{x},\mathbf{y}) + D \log^{2}\left(rac{g_{m}\mathbf{w}}{g_{m}\mathbf{v}}
ight)$

introduction	\mathbb{R}^{D}_{+}	\mathcal{T}	total	induced structure	example	conc
		•0				

Euclidean space structure of $\mathbb{R}_+ \times S^D = \mathcal{T}$

notation:
$$\mathbf{w} \in \mathbb{R}^{D}_{+}$$
, $t(\mathbf{w}) \in \mathbb{R}_{+}$, $C\mathbf{w} = \mathbf{x} \in S^{D}$, $\tilde{\mathbf{x}} = (t(\mathbf{w}), \mathbf{x}) \in \mathcal{T}$, $\alpha \in \mathbb{R}$

 $t(\mathbf{w})$ is a total (abundance, mass); it can be the sum, product, arithmetic or geometric mean, a single component, ...

 \mathcal{T} -perturbation (Abelian inner group operation in \mathcal{T})

$$\begin{aligned} \tilde{\mathbf{X}} \oplus_T \tilde{\mathbf{y}} &= (t(\mathbf{w}) \oplus_+ t(\mathbf{v}), \mathbf{X} \oplus_a \mathbf{y}) \\ &= [t(\mathbf{w}) \cdot t(\mathbf{v}), \mathcal{C}[x_1 y_1, x_2 y_2, \dots, x_D y_D]] \end{aligned}$$

 \mathcal{T} -powering (external multiplication in \mathcal{T})

$$\alpha \odot_{\mathcal{T}} \tilde{\mathbf{x}} = (\alpha \odot_{+} t(\mathbf{w}), \alpha \odot_{a} \mathbf{x}) = [t(\mathbf{w})^{\alpha}, \mathcal{C}[x_{1}^{\alpha}, x_{2}^{\alpha}, \dots, x_{D}^{\alpha}]]$$

(日) (日) (日) (日) (日) (日) (日)

 \mathcal{T} -inner-product $\langle \tilde{\mathbf{x}}, \tilde{\mathbf{y}} \rangle_{\mathcal{T}} = \langle t(\mathbf{w}), t(\mathbf{v}) \rangle_{+} + \langle \mathbf{x}, \mathbf{y} \rangle_{a}$

introduction	$\mathcal{T}_{\circ \bullet}$	total oo	induced structure ○	example 000	o o

properties of $(\mathcal{T}, \oplus_{\mathcal{T}}, \odot_{\mathcal{T}}, \langle, \rangle_{\mathcal{T}})$

$\forall \tilde{\mathbf{x}}, \tilde{\mathbf{y}}, \tilde{\mathbf{z}} \in \mathcal{T}, \, \alpha \in \mathbb{R}$

- (a) (associative) $(\tilde{\mathbf{x}} \oplus_T \tilde{\mathbf{y}}) \oplus_T \tilde{\mathbf{z}} = \tilde{\mathbf{x}} \oplus_T (\tilde{\mathbf{y}} \oplus_T \tilde{\mathbf{z}})$
- (b) (commutative) $\tilde{\mathbf{x}} \oplus_T \tilde{\mathbf{y}} = \tilde{\mathbf{y}} \oplus_T \tilde{\mathbf{x}}$
- (c) (neutral element) $\tilde{\bm{x}} \oplus_{\mathcal{T}} \tilde{\bm{n}} = \tilde{\bm{x}}$, with $\tilde{\bm{n}} = [1, \mathcal{C}[1, 1, \dots, 1]]$
- (d) (opposite element) opposite of $\tilde{\mathbf{x}} = [t(\mathbf{w}), x_1, x_2, \dots, x_D]$,

$$\ominus_T \tilde{\mathbf{X}} = \left[\frac{1}{t(\mathbf{w})}, \mathcal{C}\left[\frac{1}{x_1}, \frac{1}{x_2}, \dots, \frac{1}{x_D}\right]\right] = (-1) \odot_T \tilde{\mathbf{X}}$$

(e) (distributive) $\alpha \odot_{\mathcal{T}} (\tilde{\mathbf{x}} \oplus_{\mathcal{T}} \tilde{\mathbf{y}}) = (\alpha \odot_{\mathcal{T}} \tilde{\mathbf{x}}) \oplus_{\mathcal{T}} (\alpha \odot_{\mathcal{T}} \tilde{\mathbf{y}})$ (f) (unit) $1 \odot_{\mathcal{T}} \tilde{\mathbf{x}} = \tilde{\mathbf{x}}$

inner product and squared distance

$$\langle \tilde{\mathbf{x}}, \tilde{\mathbf{y}} \rangle_T = \lg(t(\mathbf{w})) \cdot \lg(t(\mathbf{v})) + \langle \mathbf{x}, \mathbf{y} \rangle_a$$

 $d_T^2(\tilde{\mathbf{x}}, \tilde{\mathbf{y}}) = d_+^2(t(\mathbf{w}), t(\mathbf{v})) + d_a^2(\mathbf{x}, \mathbf{y}) = \lg^2 \frac{t(\mathbf{w})}{t(\mathbf{v})} + d_a^2(\mathbf{x}, \mathbf{y})$

introduction	\mathbb{R}^{D}_{+}	total	induced structure	example	conc
		•0			

the *total* as a power of the product and as the sum of components

$$h: \mathbb{R}^{D}_{+}
ightarrow \mathcal{T} = \mathbb{R}_{+} imes \mathcal{S}^{D}$$
 such that

*h*_p is one-to-one

(key for the proof: $g_m \mathbf{x} = g_m \mathbf{w} / (\sum_i w_i)$)

$$h_{s}(\mathbf{w}) = (t_{s}(\mathbf{w}), \mathcal{C}\mathbf{w})$$
$$= \left(\sum_{i=1}^{D} w_{i}, \mathcal{C}\mathbf{w}\right)$$

h_s is one-to-one

 $h_{\rho}(\mathbf{w} \oplus_{+} \mathbf{v}) = h_{\rho}(\mathbf{w}) \oplus_{T} h_{\rho}(\mathbf{v})$ $h_{\rho}(\alpha \odot_{+} \mathbf{w}) = \alpha \odot_{T} h_{\rho}(\mathbf{w})$

$$h_{\mathcal{S}}(\mathbf{w} \oplus_{+} \mathbf{v}) \neq h_{\mathcal{S}}(\mathbf{w}) \oplus_{\mathcal{T}} h_{\mathcal{S}}(\mathbf{v})$$

 $h_{\mathcal{S}}(\alpha \odot_{+} \mathbf{w}) \neq \alpha \odot_{\mathcal{T}} h_{\mathcal{S}}(\mathbf{w})$

*h*_p is an isomorphism

h_s is not an isomorphism

introduction	\mathbb{R}^{D}_{+}	total ○●	induced structure ○	example 000	o o

distance properties

inequalities:

$$d_{+}^{2}(\mathbf{w},\mathbf{v}) = d_{a}^{2}(\mathbf{x},\mathbf{y}) + D \lg^{2} \left[\frac{g_{m}\mathbf{w}}{g_{m}\mathbf{v}} \right] \qquad \Rightarrow \mathbf{d}_{+} \geq \mathbf{d}_{a}$$

$$d_T^2(\tilde{\mathbf{x}}, \tilde{\mathbf{y}}) = d_a^2(\mathbf{x}, \mathbf{y}) + \lg^2 \frac{t(\mathbf{w})}{t(\mathbf{v})} = d_+^2(\mathbf{w}, \mathbf{v}) + \lg^2 \frac{t(\mathbf{w})}{t(\mathbf{v})} - D \lg^2 \left[\frac{g_m \mathbf{w}}{g_m \mathbf{v}}\right]$$

consequence: for $t = t_p$

•
$$\delta = 1/\sqrt{D} \Rightarrow d_T^2 = d_+^2$$

• $\delta > 1/\sqrt{D} \Rightarrow d_T^2 > d_+^2$
• $\delta < 1/\sqrt{D} \Rightarrow d_T^2 < d_+^2$

general result:

$$h: \mathbb{R}^{D}_{+} \to \mathcal{T}$$
, with $t_{p}(\mathbf{w}) = (\prod_{i} w_{i})^{1/\sqrt{D}}$, $\mathbf{x} = \mathcal{C}\mathbf{w}$, is an isometry

introduction	\mathbb{R}^{D}_{+}	total	induced structure	example	conc
			•		

induced structure in \mathbb{R}^D_+ by $\mathcal{T}_s = \mathbb{R}_+ \times \mathcal{S}^D$ (with the total = sum)

consider
$$h :\to \mathbb{R}^D_+ \to \mathcal{T}_s = \mathbb{R}_+ \times S^D$$
 such that $h(\mathbf{w}) = (t_s(\mathbf{w}), \mathcal{C}\mathbf{w}) = (t_s(\mathbf{w}), \mathbf{x}) = \tilde{\mathbf{x}},$
 $h(\mathbf{v}) = (t_s(\mathbf{v}), \mathcal{C}\mathbf{v}) = (t_s(\mathbf{v}), \mathbf{y}) = \tilde{\mathbf{y}}$

Abelian group operation:

$$\mathbf{w} \oplus_{+s} \mathbf{v} = h^{-1}(h(\mathbf{w}) \oplus_{\mathcal{T}} h(\mathbf{v})) = \left[\dots, \frac{t_s(\mathbf{w})t_s(\mathbf{v})}{\sum_{j=1}^D x_j y_j} x_j y_j, \dots \right]$$

external multiplication:

$$\alpha \odot_{+s} \mathbf{w} = h^{-1}(\alpha \odot_T h(\mathbf{w})) = \left\lfloor \dots, \frac{t_s(\mathbf{w})^{\alpha}}{\sum_{j=1}^D x_j^{\alpha}} x_j^{\alpha}, \dots \right\rfloor$$

• squared distance: $d_{+s}^2(\mathbf{w}, \mathbf{v}) = d_T^2(\tilde{\mathbf{x}}, \tilde{\mathbf{y}}) = \ln^2(t_s(\mathbf{w})/t_s(\mathbf{v})) + d_a^2(\mathbf{x}, \mathbf{y})$

introduction	\mathbb{R}^{D}_{+}	total	induced structure	example	conc
				000	

phytoplankton abundances in a river

	Mvar		centre in \mathbb{R}^D_+								
	$\mathbb{R}^{D}_{+}, \mathcal{T}_{p}$	t _s	t _p	ana	aph	осу	aug	aud	act	ank	cry
В	7.268	4244	7573866	627	491	94	2373	67	193	287	111
Α	6.867	7530	69151799	957	671	856	3597	108	320	715	305
BA	8.705	6079	32945104	830	604	408	3129	92	270	526	218
	Mvar		centres in \mathcal{T}								
	T_s	ts	t _p	ana	aph	осу	aug	aud	act	ank	cry
В	6.039	5456	7573866	.148	.116	.022	.559	.016	.046	.068	.026
Α	5.311	9654	69151799	.127	.089	.114	.478	.014	.043	.095	.041
BA	6.241	7973	32945104	.137	.099	.067	.515	.015	.045	.087	.036

centres and metric variances for A, B, and BA samples;

$$t_{s} = \sum_{i=1}^{D} w_{i}; \quad t_{p} = \left(\prod_{i=1}^{D} w_{i}\right)^{1/\sqrt{D}}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

introduction	ℝ ^D 00		total oo	induced structure O	example ○●○	conc o
biplots in	ר \mathbb{R}^D_+ מ	and ${\mathcal T}$	$=\mathbb{R}_+$:	$ imes \mathcal{S}^{\mathcal{D}}$		

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

introduction	$\mathbb{R}^{D}_{+}_{00}$		total oo	induced structure ○	example ○○●	conc o
biplots	in ${\mathcal T}=$	$\mathbb{R}_+ imes$	SD			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

working	working in \mathbb{R}^D_+ and $\mathcal{T}=\mathbb{R}_+ imes\mathcal{S}^D$								
introduction	ℝ ^D 00		total oo	induced structure ○	example 000	conc ●			

- allows easy comparison of structure and metrics
- the total as product of components leads to an isomorphism; the total as the product powered to $1/\sqrt{D}$ leads to an isometry
- the total as sum of components does not lead to an isomorphism; if the relevant total is the sum, it is not reasonable to work in ℝ^D₊ taking logarithms of the components

(ロ) (同) (三) (三) (三) (○) (○)