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Image Processing in Problems

X Representation
Quality Improving (contrast enhancement, sharpening,
etc.)
X Edge Detection
Compression (Reduction) and Reconstruction
X Reconstruction of Damages
Fusion
Segmentation
X Registration
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Computation Intelligence. Why?

To bring intuition in a form of knowledge
To keep connection between a problem and a method of
solving
To explain “why it works”
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Image as an Object

Image
2D gray-scaled image u : D −→ R is identified with intensity
function of two variables such that the domain D is sampled,
and the range R is quantized.

0 x

1

y

�x
�y

Image  u Domain -
D = {1, . . . ,N} × {1, . . . ,M}
Range -
R = {0,1, . . . ,255}
Pixel -
image sample.
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Representations of Image

Image

u : {1, . . . ,N} × {1, . . . ,M} −→ {0,1, . . . ,255},

can be represented by:
N ×M matrix U = (uij) where uij = u(i , j)
interpolating (approximating) function

û : [1,N]× [1,M] −→ [0,255],

such that for all i = 1,2, . . . ,N, j = 1,2, . . . ,M,

u(i , j) = û(i , j) (u(i , j) ≈ û(i , j)).
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Representations by Interpolation

6/8/13 310px-BilinearInterpolExample.png (310×240)

upload.wikimedia.org/wikipedia/commons/thumb/1/16/BilinearInterpolExample.png/310px-BilinearInterpolExample.png 1/1

6/8/13 308px-BicubicInterpolationExample.png (308×240)

upload.wikimedia.org/wikipedia/commons/thumb/d/d5/BicubicInterpolationExample.png/308px-BicubicInterpolationExample.png 1/1

Bilinear (left) and bicubic interpolations as magnifiers.
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Approximate Representation by F-transform

u⇒ F [u]⇒ û

u and F [u] are represented by matrices, û – analytically.
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F-transform

F-transform – result of a weighted projection of an image on a
finite set of granules that establish a fuzzy partition of a domain.
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Granulation of Domain [1,N]× [1,M]

Rectangular area [1,N]× [1,M] Granule Ak × Bl

Fuzzy sets Ak : [1,N] −→ [0,1], Bl : [1,M] −→ [0,1].
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Fuzzy Partition of [1,N]× [1,M]

Granules Ak × Bl , k = 1, . . . ,n, l = 1, . . . ,m, are associated
with selected nodes (k , l), 3 ≤ k ≤ N, 3 ≤ l ≤ M.
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Matrix Representation of Fuzzy Partition of [1,N]

A1, . . . ,An – fuzzy partition of [1,N]

Denote aki = Ak (i), ak =
∑N

i=1 aki , ai =
∑n

k=1 aki ,
k = 1, . . . ,n, i = 1, . . . ,N

An×N =

a11 . . . a1N
. . . . . . . . .
an1 . . . anN

 – matrix of fuzzy partition

P(A)n×n =

 1
a1

. . . 0
. . . . . . . . .

0 . . . 1
an

 – raw normalization

Q(A)N×N =

 1
a1 . . . 0
. . . . . . . . .

0 . . . 1
aN

 – column normalization
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Direct F-transform of image u (Reduction)

u is represented by matrix UN×M = (uij) where uij = u(i , j)
fuzzy partition A1, . . . ,An – by matrix An×N , n < N
fuzzy partition B1, . . . ,Bm – by matrix Bm×M , m < M

The n ×m matrix F [u] is the direct F-transform of u
w.r.t. A1 × B1, . . . ,An × Bm where

F [u]n×m = (P(A)A)UN×M(P(B)B)T

and the components are

F [u]kl =

∑N
i=1

∑M
j=1 u(i , j)Ak (i)Bl(j)∑N

i=1
∑M

j=1 Ak (i)Bl(j)
.
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F-transform as a Weighted Projection

Image u Image block on Ak × Bl

F [u]kl
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Inverse F-transform of image u (Magnification)

The N ×M matrix û is the representation of the inverse
F-transform of u on {1, . . . ,N} × {1, . . . ,M} where

ûN×M = (AQ(A))T F [u]n×m(BQ(B))

and the pixels are as follows

û(i , j) =
∑n

k=1
∑m

l=1 F [u]klAk (i)Bl(j)∑n
k=1

∑m
l=1 Ak (i)Bl(j)

,

i = 1, . . . ,N, j = 1, . . . ,M.
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Inverse F-transform as Magnifier

F [u] – F-transform of u

û – inverse F-transform of u
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Main Properties of F-Transform

Best Approximation
Component F [u]kl , k = 1, . . . ,n, l = 1, . . . ,m, minimizes the
following criterion

N∑
i=1

M∑
j=1

(u(i , j)− x)2Ak (i)Bl(j)
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Main Properties of F-Transform

F-Transform of Constants
Components of a constant image u where u(i , j) = c coincide
with c, i.e. for all k = 1, . . . ,n, l = 1, . . . ,m,

F [u]kl = c.
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Main Properties of F-Transform

Linearity
The map F : u 7→ F [u] is linear, i.e. for all u,v, and for all
α, β ∈ R,

F(αu + βv) = αF(u) + βF(v).
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F-Transform for Image Reduction

Image Reduction aims at adjusting image to a smaller screen.



�����

Images F-transform Reduction Reconstruction Edge Detection Other Applications Conclusion

Image Reduction in Examples, Ratio = 1/9

The image reduction is performed by the direct F-transform.
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Image Reduction in Examples, Ratio = 1/9

Filtering by Reduction

1076 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 3, MARCH 2012

TABLE II
FREQUENCY OF CHOOSING AGGREGATION FUNCTIONS BY ALGORITHM 1 IN

IMAGES (A) AND (C) OF FIG. 4

TABLE III
FREQUENCY OF CHOOSING AGGREGATION FUNCTIONS BY ALGORITHM 1 WHEN

IMAGES (A) AND (C) OF FIG. 4 ARE AFFECTED BY SALT-AND-PEPPER NOISE

Fig. 5. (a) and (c) Original images with 20% of impulsive noise and (b1) and
(d1) Reductions applying Algorithm 1 and (b2) and (d2) subsampling algorithm.

aggregation functions. The second proposed algorithm im-
proves on that. We repeat steps 1–5 of Algorithm 1. Once we

Fig. 6. Frequency of aggregation functions as a function of the intensity of the
salt-and-pepper noise of original images (a) and (c) of Fig. 4.

have , Algorithm 2 is based on the calculation of
all the possible combinations of , , and (there
are such combinations) in the following way:

Notice that the possible outputs of Algorithm 1 are a subset of
possible outputs of Algorithm 2. We analyze under which condi-
tions that the solutions of Algorithm 2 are different from those in
Algorithm 1. In these cases, the value of the same penalty func-
tion with respect to will be less than value calculated
in Algorithm 1. In Fig. 7, we show a diagram of Algorithm 2.

Algorithm 2 Second color image reduction algorithm

Input: of dimension

Output: of dimension

1: Divide image in disjoint blocks of dimension . If
or are not multiples of eliminate the necessary number of
rows and/or columns to satisfy this condition.

2: Choose the penalty function .
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Notice that the possible outputs of Algorithm 1 are a subset of
possible outputs of Algorithm 2. We analyze under which condi-
tions that the solutions of Algorithm 2 are different from those in
Algorithm 1. In these cases, the value of the same penalty func-
tion with respect to will be less than value calculated
in Algorithm 1. In Fig. 7, we show a diagram of Algorithm 2.

Algorithm 2 Second color image reduction algorithm

Input: of dimension

Output: of dimension

1: Divide image in disjoint blocks of dimension . If
or are not multiples of eliminate the necessary number of
rows and/or columns to satisfy this condition.

2: Choose the penalty function .

Original image contains 20% of impulsive noise
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MSE-quality of Reductions: FT versus
Interpolation

Various reduction algorithms are compared on a set that
contains 53 color images from
http://sipi.usc.edu/database/database.php/volume=textures.

Type FT Bilinear Bicubic Lanczos
Min 32.6 43.6 44.7 41.9
1st Qu. 81.2 113.7 113.8 121.4
Median 102.1 145.6 150.0 170.8
Mean 146.5 197.3 199.6 212.0
3rd Qu. 163.0 246.3 242.0 262.6
Max 517.0 606 607.0 626.7

All statistics show the advantage of the FT-reduction !
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Image Reconstruction

Image reconstruction takes a damaged image (noise, text,
scratch, etc.) and restores it.

Assumption. The damaged area must be separated !
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Image Reconstruction. Illustration
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Image Reconstruction. Illustration
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F-transform for Image Reconstruction

Proposed Method
Repeat until the image is fully reconstructed

choose a fuzzy partition and compute the respective
inverse F-transform;
if a pixel of the original image is undamaged then it is
chosen for the reconstructed image, otherwise it is
replaced by the value of the inverse F-transform.
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F-transform Reconstruction in steps

“Narrow” granules in partition “Wide” granules in partition
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F-transform versus Interpolation

x

y

f
Fk

b

A1 A2
An

F1

a b

Fk+1

Ak+1

Fs

As

Fs-1
– Bilinear interpolation
– F-transform
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Illustration of the Method

University of Ostrava FUZZY TRANSFORM FOR IMAGE RECONSTRUCTION 

Step-by-step method 

RMSD = 4.56 
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Illustration of the Results

Types of damage

University of Ostrava FUZZY TRANSFORM FOR IMAGE RECONSTRUCTION 

Impaint Text 70% Noise
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Illustration of the Results

Reconstruction

University of Ostrava FUZZY TRANSFORM FOR IMAGE RECONSTRUCTION 
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MSE-quality of Reconstructions: FT versus
Interpolation

Damage RBF FT
Noise 12.47 11.72
Inpaint 5.23 4.87

Text 4.62 4.56
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“Edge” as a Notion

“Edge” is an area where image intensity abruptly changes.
Edge detection is aiming at searching local maxima of the
gradient magnitude.
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F1-transform

F 1-transform

Let f be a differentiable function on [a,b].
The F -transform (with constant components) can be
generalized to the F 1-transform with linear components:

F 1[f ] = [F 1
1 , . . . ,F

1
n ]

where for each k = 1, . . . ,n

F 1
k = ck ,0 P0

k + ck ,1 P1
k
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F1-transform

F 1-transform and Orthogonal Projections

Every component

F 1
k = ck ,0 P0

k + ck ,1 P1
k , k = 1, . . . ,n,

is a weighted orthogonal projection of f onto a linear
subspace of functions with the basis of polynomials
P0

k = 1,P1
k = (x − xk ),

F 1
k = ck ,0 + ck ,1 (x − xk ),

where

ck ,0 = F [f ]k , ck ,1 ≈ f ′(xk ).
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F1-transform

F -transform and F 1-transform

F -transform F 1-transform
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F1-transform

F 1-transform for Edge Localization

Edge as a local maximum of a derivative magnitude
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F1-transform

Approximation of the gradient

Gradient vector (ux ,uy ) of the image function u at (k , l) is
approximated by (c1

kl,1, c
1
kl,2) – vector of coefficients of the

respective linear component of F 1-transform of u:

F 1(x , y) = c1
kl,0 + c1

kl,1(x − k) + c1
kl,2(y − l),

k = 1, . . . ,n, l = 1, . . . ,m.
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Experiments and Comparison

F 1-transform edge detection

Original image F 1-transform detected edges
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Experiments and Comparison

Original image - Lena

Blurred background, texture on the hat, perfect main contours,
noise.
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Experiments and Comparison

Comparison - Lena

“Classical” Canny algorithm F 1-transform edge detector
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Experiments and Comparison

Number of Detected Edges

115000

120000

125000

130000

135000

140000

145000

1 2 3 4 5

Canny

FT

FT without Gauss
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Compression

Original “Cameraman”
Image compression methodology based on fuzzy transform 9

Fig. 4 left: original; right: proposed reconstruction, CR=0.08, PSNR=29dB.

Fig. 5 left: proposed reconstruction, CR=0.25, PSNR=37dB; right: proposed reconstruction,
CR=0.44, PSNR=43dB.

Fig. 6 left: JPEG, CR=0.25, PSNR=39dB; right: JPEG, CR=0.43, PSNR=46dB.
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Compression

F-transform reconstructed

Image compression methodology based on fuzzy transform 9

Fig. 4 left: original; right: proposed reconstruction, CR=0.08, PSNR=29dB.

Fig. 5 left: proposed reconstruction, CR=0.25, PSNR=37dB; right: proposed reconstruction,
CR=0.44, PSNR=43dB.

Fig. 6 left: JPEG, CR=0.25, PSNR=39dB; right: JPEG, CR=0.43, PSNR=46dB.

left CR=0.25, PSNR=37 (JPEG 39); right CR=0.44, PSNR=43 (46)
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Registration

Dva obrázky se společnou stejnou částí 

 

Provede se lokalizace specifických oblastí - rohů 

 

Oblasti ve snímcích se spárují pomocí algoritmu podobnosti, určí se posun a obrazy se spojí 
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Conclusion

F-transform makes manipulating with objects in a target
domain much easier
FT reduction is fast and efficient
FT reconstruction is easier than the interpolation based
reconstruction
FT edge detection has better quality than Canny’s detector
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