

**** * * EVROPSKÁ UNIE

OP Vzdělávání pro konkurenceschopnost

> INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Streamlining the Applied Mathematics Studies at Faculty of Science of Palacký University in Olomouc CZ.1.07/2.2.00/15.0243

International Conference Olomoucian Days of Applied Mathematics

ODAM 2013

Department of Mathematical analysis and Applications of Mathematics Faculty of Science Palacký Univerzity Olomouc

Computational Intelligence for Image Processing

Irina Perfilieva

Centre of Excellence IT4Innovations Division of the University of Ostrava Institute for Research and Applications of Fuzzy Modeling

30. dubna 22, 701 03 Ostrava 1, Czech Republic Trina.Perfilieva@osu.cz

ODAM 2013, Olomouc, June 12 - 14

- 2

Images	F-transform	Reduction	Reconstruction	Edge Detection	Other Applications	Conclusion
Outl	ine					

- F¹-transform
- Experiments and Comparison
- **Other Applications** 6

Images	F-transform	Reduction	Reconstruction	Edge Detection	Other Applications	Conclusion
Outl	ine					
1	Images					
2	F-transf	orm				
3	Reductio	on				

- Reconstruction
- **5** Edge Detection
 - F¹-transform
 - Experiments and Comparison
- 6 Other Applications
- Conclusion

Image Processing in Problems

- Representation
- Quality Improving (contrast enhancement, sharpening, etc.)
- ✓ Edge Detection
- Compression (Reduction) and Reconstruction
- ✓ Reconstruction of Damages
- Fusion
- Segmentation
- ✓ Registration

- To bring intuition in a form of knowledge
- To keep connection between a problem and a method of solving

< □ > < @ > < \alpha > < \al

ъ

• To explain "why it works"

Image as an Object

Image

2D gray-scaled image $\mathbf{u} : D \longrightarrow R$ is identified with **intensity** function of two variables such that the domain *D* is sampled, and the range *R* is quantized.

Domain - $D = \{1, \dots, N\} \times \{1, \dots, M\}$ Range - $R = \{0, 1, \dots, 255\}$ Pixel image sample.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Image

$$\mathbf{u}: \{1,\ldots,N\} \times \{1,\ldots,M\} \longrightarrow \{0,1,\ldots,255\},$$

can be represented by:

•
$$N \times M$$
 matrix $\mathbf{U} = (u_{ij})$ where $u_{ij} = \mathbf{u}(i, j)$

interpolating (approximating) function

 $\hat{\mathbf{u}}: [\mathbf{1}, N] \times [\mathbf{1}, M] \longrightarrow [\mathbf{0}, \mathbf{255}],$

such that for all i = 1, 2, ..., N, j = 1, 2, ..., M,

 $\mathbf{u}(i,j) = \hat{\mathbf{u}}(i,j) \quad (\mathbf{u}(i,j) \approx \hat{\mathbf{u}}(i,j)).$

Edge Detection

Other Applications

Conclusion

Representations by Interpolation

Bilinear (left) and bicubic interpolations as magnifiers.

Edge Detection

Other Applications

(日)

Conclusion

Approximate Representation by F-transform

$\textbf{u} \Rightarrow F[\textbf{u}] \Rightarrow \hat{\textbf{u}}$

u and $F[\mathbf{u}]$ are represented by matrices, $\hat{\mathbf{u}}$ – analytically.

Images	F-transform	Reduction	Reconstruction	Edge Detection	Other Applications	Conclusion
Outl	ine					

- **F-transform Edge Detection** • F^1 -transform • Experiments and Comparison
 - **Other Applications**

F-transform – result of a weighted projection of an image on a finite set of granules that establish a fuzzy partition of a domain.

Edge Detection

Other Applications

Conclusion

Fuzzy Partition of $[1, N] \times [1, M]$

Granules $A_k \times B_l$, k = 1, ..., n, l = 1, ..., m, are associated with selected nodes (k, l), $3 \le k \le N$, $3 \le l \le M$. ・ コ ト ・ 雪 ト ・ 目 ト ・

э

Images F-transform Reduction Reconstruction Edge Detection Other Applications Conclusion

Matrix Representation of Fuzzy Partition of [1, N]

•
$$A_1, \ldots, A_n$$
 - fuzzy partition of $[1, N]$
• Denote $a_{ki} = A_k(i)$, $a_k = \sum_{i=1}^N a_{ki}$, $a^i = \sum_{k=1}^n a_{ki}$,
 $k = 1, \ldots, n$, $i = 1, \ldots, N$
• $A_{n \times N} = \begin{pmatrix} a_{11} & \ldots & a_{1N} \\ \ldots & \ldots & \ldots \\ a_{n1} & \ldots & a_{nN} \end{pmatrix}$ - matrix of fuzzy partition
• $P(A)_{n \times n} = \begin{pmatrix} \frac{1}{a_1} & \ldots & 0 \\ \ldots & \ldots & \vdots \\ 0 & \ldots & \frac{1}{a_n} \end{pmatrix}$ - raw normalization
• $Q(A)_{N \times N} = \begin{pmatrix} \frac{1}{a^1} & \ldots & 0 \\ \ldots & \ldots & \vdots \\ 0 & \ldots & \frac{1}{a^N} \end{pmatrix}$ - column normalization

<□> <@> < 注→ < 注→ < 注→ < 注→ のへの

Images F-transform Reduction Reconstruction Edge Detection Other Applications Conclusion

Direct F-transform of image u (Reduction)

- **u** is represented by matrix $\mathbf{U}_{N \times M} = (u_{ij})$ where $u_{ij} = \mathbf{u}(i, j)$
- fuzzy partition A_1, \ldots, A_n by matrix $A_{n \times N}$, n < N
- fuzzy partition B_1, \ldots, B_m by matrix $B_{m \times M}$, m < M

The $n \times m$ matrix $F[\mathbf{u}]$ is the direct **F-transform** of **u** w.r.t. $A_1 \times B_1, \ldots, A_n \times B_m$ where

$$F[\mathbf{u}]_{n \times m} = (P(A)A)\mathbf{U}_{N \times M}(P(B)B)^T$$

and the components are

$$F[\mathbf{u}]_{kl} = \frac{\sum_{i=1}^{N} \sum_{j=1}^{M} \mathbf{u}(i, j) A_k(i) B_l(j)}{\sum_{i=1}^{N} \sum_{j=1}^{M} A_k(i) B_l(j)}$$

(日)

F-transform as a Weighted Projection

Inverse F-transform of image u (Magnification)

The $N \times M$ matrix $\hat{\mathbf{u}}$ is the representation of the inverse **F-transform** of \mathbf{u} on $\{1, \dots, N\} \times \{1, \dots, M\}$ where

$$\hat{\mathbf{u}}_{N \times M} = (AQ(A))^T F[\mathbf{u}]_{n \times m}(BQ(B))$$

and the pixels are as follows

$$\hat{\mathbf{u}}(i,j) = \frac{\sum_{k=1}^{n} \sum_{l=1}^{m} F[\mathbf{u}]_{kl} A_k(i) B_l(j)}{\sum_{k=1}^{n} \sum_{l=1}^{m} A_k(i) B_l(j)},$$

i = 1, ..., N, j = 1, ..., M.

Edge Detection

ion Other Ap

Other Applications Co

Conclusion

Inverse F-transform as Magnifier

$F[\mathbf{u}] - F$ -transform of \mathbf{u}

\hat{u} – inverse F-transform of u

Images F-transform Reduction Reconstruction Edge Detection Other Applications Conclusion

Main Properties of F-Transform

Best Approximation

Component $F[\mathbf{u}]_{kl}$, k = 1, ..., n, l = 1, ..., m, minimizes the following criterion

$$\sum_{i=1}^{N} \sum_{j=1}^{M} (\mathbf{u}(i,j) - x)^2 A_k(i) B_l(j)$$

Images F-transform Reduction Reconstruction Edge Detection Other Applications Conclusion

Main Properties of F-Transform

F-Transform of Constants

Components of a **constant image u** where $\mathbf{u}(i, j) = \mathbf{c}$ coincide with \mathbf{c} , i.e. for all k = 1, ..., n, l = 1, ..., m,

$$F[\mathbf{u}]_{kl} = \mathbf{c}.$$

Main Properties of F-Transform

Linearity

The map $\mathbf{F} : \mathbf{u} \mapsto F[\mathbf{u}]$ is linear, i.e. for all \mathbf{u}, \mathbf{v} , and for all $\alpha, \beta \in \mathbb{R}$,

$$\mathbf{F}(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha \mathbf{F}(\mathbf{u}) + \beta \mathbf{F}(\mathbf{v}).$$

Images	F-transform	Reduction	Reconstruction	Edge Detection	Other Applications	Conclusion
Outl	ine					
1	Images					
2	F-transf	orm				
3	Reducti	on				
4	Reconst	truction				
5	 Edge De ● F¹-tra ● Exper 	etection Insform iments ar	nd Comparis	son		
6	Other A	pplicatio	ns			
7) Conclus	sion				

F-Transform for Image Reduction

Image Reduction aims at adjusting image to a smaller screen.

(日)

Image Reduction in Examples, Ratio = 1/9

The image reduction is performed by the direct F-transform.

Edge Detection

Image Reduction in Examples, Ratio = 1/9

Filtering by Reduction

Original image contains 20% of impulsive noise

MSE-quality of Reductions: FT versus Interpolation

Various reduction algorithms are compared on a set that contains 53 color images from

http://sipi.usc.edu/database/database.php/volume=textures.

Туре	FT	Bilinear	Bicubic	Lanczos
Min	32.6	43.6	44.7	41.9
1st Qu.	81.2	113.7	113.8	121.4
Median	102.1	145.6	150.0	170.8
Mean	146.5	197.3	199.6	212.0
3rd Qu.	163.0	246.3	242.0	262.6
Max	517.0	606	607.0	626.7

(日)

All statistics show the advantage of the FT-reduction !

Images	F-transform	Reduction	Reconstruction	Edge Detection	Other Applications	Conclusion
0						
Outi	ine					
0	Images					
	F-transf	orm				
	Paduati	00				
	neuucii					
4	Reconsi	ruction				
5	 Edge De F¹-tra Exper 	etection Insform iments ar	nd Comparis	son		

IRAEM

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

- **6** Other Applications
 - 7 Conclusion

Image reconstruction takes a damaged image (noise, text, scratch, etc.) and restores it.

Assumption. The damaged area must be separated !

Images F-transform

Reduction

Reconstruction

Edge Detection

tion Other Ap

Other Applications

Conclusion

Image Reconstruction. Illustration

Images F-transform

Reduction

Reconstruction

Edge Detection

tion Other A

Other Applications

Conclusion

Image Reconstruction. Illustration

Edge Detection

tion Other Applications

lications Conclusion

F-transform for Image Reconstruction

Proposed Method

Repeat until the image is fully reconstructed

- choose a fuzzy partition and compute the respective inverse F-transform;
- if a pixel of the original image is undamaged then it is chosen for the reconstructed image, otherwise it is replaced by the value of the inverse F-transform.

F-transform Reconstruction in steps

・ロット (雪) (日) (日)

F-transform Reconstruction Other Applications Images Reduction Edge Detection

Conclusion

F-transform versus Interpolation

Edge Detection

on Other Applications

s Conclusion

Illustration of the Method

RMSD = 4.56

・ロット (雪) (日) (日)

Edge Detection

Other Applications

Conclusion

Illustration of the Results

Types of damage

The server

Impaint

Lorem ipsum dolor sit amet, con auctor mauris in sapien eleifenc dum semper. Nullam ut ante err stas in, eleifend eget dolor. Vesi is tempor augue varius id. Maur uisque pharetra, metus at lacini , vitae consequat massa odio p e penatibus et magnis dis partu aecenas non quam tellus. Fusc m non, rhoncus at enim. Doner ue sit amet, luctus sed velit. Pro retium velit gravida.

Text

Edge Detection

Other Applications

Conclusion

Illustration of the Results

Reconstruction

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

Edge Detection

Other Applications

Conclusion

MSE-quality of Reconstructions: FT versus Interpolation

Damage	RBF	FT
Noise	12.47	11.72
Inpaint	5.23	4.87
Text	4.62	4.56

Images	F-transform	Reduction	Reconstruction	Edge Detection	Other Applications	Conclusion
Outl	ine					
1	Images					
2) F-transf	orm				
3	Reducti	on				
4	Recons	truction				
5	 Edge De F¹-tra Exper 	etection Insform iments ar	nd Comparis	son		
6	Other A	pplicatio	ns			
7) Conclus	sion				IRAFM

・ロ・・(型・・ミ・・ミ・・ミークへで)

- "Edge" is an area where image intensity **abruptly** changes.
- Edge detection is aiming at searching local maxima of the gradient magnitude.

- Let *f* be a differentiable function on [*a*, *b*].
- The F-transform (with constant components) can be generalized to the F¹-transform with linear components:

$$F^{1}[f] = [F_{1}^{1}, \dots, F_{n}^{1}]$$

where for each $k = 1, \ldots, n$

$$F_k^1 = c_{k,0} \ P_k^0 + c_{k,1} \ P_k^1$$

 Images
 F-transform
 Reduction
 Reconstruction
 Edge Detection
 Other Applications
 Conclusion

 F¹-transform
 F¹-transform and Orthogonal Projections

Every component

$$F_k^1 = c_{k,0} P_k^0 + c_{k,1} P_k^1, \quad k = 1, \dots, n,$$

is a weighted orthogonal projection of *f* onto a linear subspace of functions with the basis of polynomials $P_k^0 = 1, P_k^1 = (x - x_k),$

$$F_k^1 = c_{k,0} + c_{k,1} (x - x_k),$$

where

$$c_{k,0}=F[f]_k, \quad c_{k,1}\approx f'(x_k).$$

ъ

Images F-transform Reduction Reconstruction Edge Detection Other Applications Conclusion

Edge as a local maximum of a derivative magnitude

 Images
 F-transform
 Reduction
 Reconstruction
 Edge Detection coore
 Other Applications
 Conclusion

 F¹-transform
 Approximation of the gradient

Gradient vector (**u**_x, **u**_y) of the image function **u** at (*k*, *l*) is approximated by (*c*¹_{kl,1}, *c*¹_{kl,2}) – vector of coefficients of the respective linear component of *F*¹-transform of **u**:

$$F^{1}(x, y) = c^{1}_{kl,0} + c^{1}_{kl,1}(x-k) + c^{1}_{kl,2}(y-l),$$

 $k = 1, ..., n, \ l = 1, ..., m.$

Images F-transform Reduction Reconstruction Edge Detection Othe

Other Applications

Conclusion

Experiments and Comparison

F^1 -transform edge detection

Original image

F^1 -transform detected edges

Blurred background, texture on the hat, perfect main contours, noise.

< ∃→

*F*¹-transform edge detector

< □ > < 同 >

 Images
 F-transform
 Reduction
 Reconstruction
 Edge Detection
 Other Applications
 Conclusion

 Experiments and Comparison
 Experiments and Comparison
 Conclusion
 Conclusion
 Conclusion

Number of Detected Edges

◆□▶ ◆圖▶ ◆理▶ ◆理▶ ─ 理…

Images	F-transform	Reduction	Reconstruction	Edge Detection	Other Applications	Conclusion
Outl	ine					
1	Images					
2	F-transf	orm				

- 3 Reduction
- Reconstruction
- 5 Edge Detection
 - F¹-transform
 - Experiments and Comparison
- **6** Other Applications
 - Conclusion

Original "Cameraman"

F-transform reconstructed

left CR=0.25, PSNR=37 (JPEG 39); right CR=0.44, PSNR=43 (46)

・ロン ・四 と ・ ヨ と ・ ヨ と

Images	F-transform	Reduction	Reconstruction	Edge Detection	Other Applications	Conclusion
Regi	stratio	n				

Images	F-transform	Reduction	Reconstruction	Edge Detection	Other Applications	Conclusion
Outl	ine					

F-transform Edge Detection • F^1 -transform • Experiments and Comparison **Other Applications**

• F-transform makes manipulating with objects in a target domain much easier

- FT reduction is fast and efficient
- FT reconstruction is easier than the interpolation based reconstruction
- FT edge detection has better quality than Canny's detector

- F-transform makes manipulating with objects in a target domain much easier
- FT reduction is fast and efficient
- FT reconstruction is easier than the interpolation based reconstruction
- FT edge detection has better quality than Canny's detector

- F-transform makes manipulating with objects in a target domain much easier
- FT reduction is fast and efficient
- FT reconstruction is easier than the interpolation based reconstruction
- FT edge detection has better quality than Canny's detector

- F-transform makes manipulating with objects in a target domain much easier
- FT reduction is fast and efficient
- FT reconstruction is easier than the interpolation based reconstruction
- FT edge detection has better quality than Canny's detector

