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1 System of equations in the steady regime

• Balance of mass
div (%u) = 0 (1)

%(x): Ω 7→ R . . . density of the fluid
u(x): Ω 7→ R3 . . . velocity field

• Balance of momentum

div (%u⊗ u)− div S +∇p = %f (2)

S . . . viscous part of the stress tensor (symmetric tensor)
f(x): Ω 7→ R3 . . . specific volume force (given)
p. . . pressure (scalar quantity)



• Balance of total energy

div
(
%Eu

)
+ div (q + pu) = %f · u + div

(
Su
)

(3)

E = 1
2|u|

2 + e. . . specific total energy
e . . . specific internal energy (scalar quantity)
q . . . heat flux (vector field)
(no energy sources assumed)



2 Thermodynamics

We will work with basic quantities: density % and temperature ϑ

We assume: e = e(%, ϑ), p = p(%, ϑ)

• Gibbs’ relation

1

ϑ

(
De(%, ϑ) + p(%, ϑ)D

(1

%

))
= Ds(%, ϑ) (4)

with s(%, ϑ) the specific entropy.



The entropy fulfills

• Entropy balance

div (%su) + div
(q
ϑ

)
= σ =

S : ∇u
ϑ
− q · ∇ϑ

ϑ2
(5)

• Second law of thermodynamics

σ =
S : ∇u
ϑ
− q · ∇ϑ

ϑ2
≥ 0 (6)



3 Constitutive relations

• Newtonian fluid

S = S(ϑ,∇u) = µ(ϑ)
[
∇u + (∇u)T − 2

3divuI
]

+ ξ(ϑ)divuI

(7)

µ(·): R+→ R+,
ξ(·): R+→ R+

0 : viscosity coefficients

• Fourier’s law
q = q(ϑ,∇ϑ) = −κ(ϑ)∇ϑ (8)

κ(·): R+ 7→ R+. . . heat conductivity



• Pressure law

p = p(%, ϑ) = %γ + %ϑ

or = (γ − 1)%e(%, ϑ)
(9)

(we will not consider the latter, due to additional technicalities)

• Internal energy

e(%, ϑ) = cvϑ+
%γ−1

γ − 1
(10)



• Heat conductivity
κ(ϑ) ∼ (1 + ϑm) (11)

m ∈ R+

• Viscosity coefficients

C1(1 + ϑ)α ≤ µ(ϑ) ≤ C2(1 + ϑ)α

0 ≤ ξ(ϑ) ≤ C2(1 + ϑ)α
(12)

µ(·) global Lipschitz continuous, ξ(·) continuous,
0 ≤ α ≤ 1



4 Classical formulation of the problem

We consider steady solutions in a bounded domain Ω ⊂ R3:

Steady compressible Navier–Stokes–Fourier system

div (%u) = 0

div (%u⊗ u)− div S(ϑ,∇u) +∇p(%, ϑ) = %f

div
(
%
(1
2
|u|2 + e(%, ϑ)

)
u
)
− div (κ(ϑ)∇ϑ)

= div
(
− p(%, ϑ)divu + S(ϑ,∇u)u

)
+ %f · u

(13)



Boundary conditions at ∂Ω: velocity

u · n = 0

(I− n⊗ n)(S(ϑ,∇u)n + λu) = 0,
(14)

λ ≥ 0

Boundary conditions at ∂Ω: temperature

κ(ϑ)
∂ϑ

∂n
+ L(ϑ−Θ0) = 0, (15)

L > 0



Total mass ∫
Ω

% dx = M > 0 (16)

Instead of total energy balance we can consider the entropy balance

Entropy balance

div (%s(%, ϑ)u)− div
(
κ(ϑ)
∇ϑ
ϑ

)
= σ

=
S(ϑ,∇u) : ∇u

ϑ
+
κ(ϑ)|∇ϑ|2

ϑ2

(17)



5 Weak solution to our problem

• Weak formulation of the continuity equation

∫
Ω

%u · ∇ψ dx = 0 ∀ψ ∈ C1(Ω) (18)

• Renormalized continuity equation

% extended by zero outside Ω, u extended outside Ω so that it
remains in the W 1,p space∫

Ω

b(%)u·∇ψ dx+

∫
Ω

(
%b′(%)−b(%)

)
divuψ dx = 0∀ψ ∈ C1

0(R3)

(19)
for all b ∈ C1([0,∞))∩W 1,∞(0,∞) with zb′(z) ∈ L∞(0,∞)



• Weak formulation of the momentum equation

∫
Ω

(
− %(u⊗ u) : ∇ϕϕϕ− p(%, ϑ)divϕϕϕ+ S(ϑ,∇u) : ∇ϕϕϕ

)
dx

+λ

∫
∂Ω

u ·ϕϕϕdσ =

∫
Ω

%f ·ϕϕϕdx ∀ϕϕϕ ∈ C1
n(Ω;R3)

(20)



• Weak formulation of the total energy balance

∫
Ω

−
(1

2
%|u|2 + %e(%, ϑ)

)
u · ∇ψ dx

=

∫
Ω

(
%f · uψ + p(%, ϑ)u · ∇ψ

)
dx

−
∫

Ω

((
S(ϑ,∇u)u

)
· ∇ψ + κ(ϑ)∇ϑ · ∇ψ

)
dx

−
∫
∂Ω

(L(ϑ−Θ0) + λ|u|2)ψ dσ

∀ψ ∈ C1(Ω)

(21)

Definition 1. The triple (%,u, ϑ) is called a renormalized weak
solution to our system (13)–(16) if % ≥ 0, ϑ > 0, u · n = 0,∫

Ω
% dx = M , (18), (19), (20) and (21) hold true.



6 Entropy variational solution to our problem

• Weak formulation of the entropy inequality

∫
Ω

(S(ϑ,∇u) : ∇u
ϑ

+ κ(ϑ)
|∇ϑ|2

ϑ2

)
ψ dx+

∫
∂Ω

L

ϑ
Θ0ψ dσ

≤
∫
∂Ω

Lψ dσ +

∫
Ω

(
κ(ϑ)
∇ϑ · ∇ψ

ϑ
− %s(%, ϑ)u · ∇ψ

)
dx

∀ nonnegative ψ ∈ C1(Ω)
(22)



• Global total energy balance∫
∂Ω

(L(ϑ−Θ0) + λ|u|2) dσ =

∫
Ω

%f · udx (23)

Definition 2. The triple (%,u, ϑ) is called a renormalized
variational entropy solution to our system (13)–(16), if % ≥ 0,
ϑ > 0, u ·n = 0,

∫
Ω
% dx = M (18), (19) and (20) are satisfied

in the same sense as in Definition 1, and we have the entropy
inequality (22) together with the global total energy balance (23).

Both definitions are reasonable in the sense that any smooth
weak or entropy variational solution is actually a classical solution to
(13)–(16).



7 Mathematical results

Until 2009, in the literature there was no existence results except
for small data results or one result by P.L. Lions, where, however, the
fixed mass was replaced by the finite Lp norm of the density for p
sufficiently large.

Mucha, M.P.: Commun. Math. Phys. (2009)

Assumptions: constant viscosity, L(ϑ) ∼ (1 + ϑ)l

Result: existence of weak solution (even fulfilling the internal
energy equality) for γ > 3, l + 1 = m > 3γ−1

3γ−7, % ∈ L∞(Ω),
u, ϑ ∈W 1,q(Ω), q <∞



Mucha, M.P.: M3AS (2010)

Assumptions: constant viscosity, slip or homogeneous Dirichlet
boundary conditions for the velocity, L(ϑ) ∼ (1 + ϑ)l

Result: existence of weak solution for γ > 7
3, l+ 1 = m > 3γ−1

3γ−7

Novotný, M.P.: J. Differential Equations (2011)

Assumptions: viscosity temperature dependent µ(ϑ), ξ(ϑ) ∼ (1+

ϑ) (α = 1), L ∼ const (l = 0) homogeneous Dirichlet condition
for the velocity (but slip b.c. can be treated via the same method)



Result: existence of an entropy variational solution for γ > 3
2 and

m > max{2
3,

2
3(γ−1)}, existence of a weak solution if additionally

γ > 5
3, m > 1

Comments: the estimates for the density deduced from Bogovskii
type estimates, which leads to γ > 3

2; better result with respect to
the constant viscosity due to the entropy inequality

Novotný, M.P.: SIAM J. Math. Anal. (2011)

Assumptions: the same as in the previous case.

Result: existence of an entropy variational solution for γ > 3+
√

41
8

and m > max{2
3,

2
3(γ−1),

2γ(4γ−1)
9(4γ2−3γ−2)

}, existence of a weak

solution if additionally γ > 4
3, m > max{1, 2γ

3(3γ−4)}



Comments: Improvement is achieved due additional local pressure
estimates; following the idea of Frehse, Steinhauer, Weigant (used for
the Navier–Stokes equations), we are able to get additional estimates
for the density of the form

sup
y∈Ω

∫
Ω

p(%, ϑ)

|x− y|A
dx < +∞

with A = A(m). This gives the a priori estimates for any γ > 1.
The lower bound for γ comes from the limit passage.



8 Case α = 1

We now present the new results from the paper Jesslé, Novotný,
M.P. (2012). We consider the case α = 1 and for simplicity Ω not
axially symmetric and λ = 0. We have in this case Korn’s inequalities
of the type

‖u‖21,2 ≤ C


∫

Ω

1

ϑ
S(ϑ,u) : ∇u dx∫

Ω

S(ϑ,u) : ∇u dx.

We assume we are at the last step in the approximative scheme, i.e.
for δ > 0 and β,B sufficiently large we have the existence of the
triple (%δ,uδ, ϑδ) fulfilling



Continuity equation:

∫
Ω

%δuδ · ∇ψ dx = 0 (24)

for all ψ ∈W 1, 30β
25β−18(Ω;R), as well as in the renormalized sense

Momentum equation:∫
Ω

(
− %δ(uδ ⊗ uδ) : ∇ϕϕϕ+ S(ϑδ,∇uδ) : ∇ϕϕϕ

−
(
p(%δ, ϑδ) + δ%βδ + δ%2

δ

)
divϕϕϕ

)
dx =

∫
Ω

%δf ·ϕϕϕ dx
(25)

for all ϕϕϕ ∈W 1,52
n (Ω;R3)



Total energy balance:∫
Ω

((
− 1

2
%δ|uδ|2 − %δe(%δ, ϑδ)

)
uδ · ∇ψ

+
(
κ(ϑδ) + δϑBδ + δϑ−1

δ

)
∇ϑδ · ∇ψ

)
dx

+

∫
∂Ω

(
L+ δϑB−1

δ

)
(ϑδ −Θ0)ψ dσ

=

∫
Ω

%δf · uδψ dx+

∫
Ω

((
− S(ϑδ,∇uδ)uδ

+
(
p(%δ, ϑδ) + δ%βδ + δ%2

δ

)
uδ
)
· ∇ψ + δϑ−1

δ ψ
)

dx

+δ

∫
Ω

( 1

β − 1
%βδ + %2

δ

)
uδ · ∇ψ dx

(26)

for all ψ ∈ C1(Ω;R)



Entropy inequality:

∫
Ω

(
ϑ−1
δ S(ϑδ,u) : ∇uδ + δϑ−2

δ +
(
κ(ϑδ)

+δϑBδ + δϑ−1
δ

)|∇ϑδ|2
ϑ2
δ

)
ψ dx

≤
∫

Ω

((
κ(ϑδ) + δϑBδ + δϑ−1

δ

)∇ϑδ : ∇ψ
ϑδ

−%s(%δ, ϑδ)uδ · ∇ψ
)

dx

+

∫
∂Ω

L+ δϑB−1
δ

ϑδ
(ϑδ −Θ0)ψ dσ,

(27)

for all ψ ∈ C1(Ω;R) nonnegative



8.1 Estimates independent of δ

Use in the entropy inequality and in the total energy balance test
functions ψ ≡ 1:

∫
Ω

(
κ(ϑδ) + δϑBδ + δϑ−1

δ

)|∇ϑδ|2
ϑ2
δ

dx

+

∫
Ω

( 1

ϑδ
S(ϑδ,uδ) : ∇uδ + δϑ−2

δ

)
dx

+

∫
∂Ω

L+ δϑB−1
δ

ϑδ
Θ0 dσ

≤
∫
∂Ω

(
L+ δϑB−1

δ

)
dσ.

(28)



∫
∂Ω

(
Lϑδ + δϑBδ

)
dσ =

∫
Ω

%δuδ · f dx

+

∫
∂Ω

(
L+ δϑB−1

δ

)
Θ0 dσ + δ

∫
Ω

ϑ−1
δ dx

(29)

Using suitable estimates of the Bogovskii-type we can get rid of
the δ-dependent terms and we conclude:

‖uδ‖1,2 + ‖∇ϑ
m
2
δ ‖2 + ‖∇ lnϑδ‖2 + ‖ϑ−1

δ ‖1,∂Ω

+δ
(
‖∇ϑ

B
2
δ ‖

2
2 + ‖∇ϑ−

1
2

δ ‖
2
2 + ‖ϑδ‖B3B + ‖ϑ−2

δ ‖1
)
≤ C

(30)

‖ϑδ‖3m + δ‖ϑδ‖BB,∂Ω ≤ C
(
1 + ‖uδ%δ‖1

)
(31)



8.2 Local estimates of the pressure

Denote for 1 ≤ a ≤ γ, 0 < b < 1

A =

∫
Ω

(%aδ |uδ|2 + %bδ|uδ|2b+2) dx (32)

We have

‖uδ‖1,2 ≤ C
‖ϑδ‖3m ≤ C

(
1 +A

a−b
2(ab+a−2b)

)∫
Ω

(
%sγδ + %

(s−1)γ
δ p(%δ, ϑδ) + (%δ|uδ|2)s + δ%

β+(s−1)γ
δ

)
dx

≤ C(1 +A
sa−b
ab+a−b),

(33)
provided 1 < s < 1

2−a, 0 < (s − 1) a
a−1 < b < 1, s ≤ 6m

3m+2,
m > 2

3. The last estimate follows from Bogovskii type estimates.



Next we want to use of the test functions of the type

ϕi(x) =
(x− y)i
|x− y|A

.

We have to work separately near the boundary and in the interior.
Lemma 1. Let y ∈ Ω, R0 <

1
3dist (y, ∂Ω). Then∫

BR0
(y)

(p(%δ, ϑδ)
|x− y|A

+
%δ|uδ|2

|x− y|A
)

dx

≤ C
(
1 + ‖p(%δ, ϑδ)‖1 + ‖uδ‖1,2(1 + ‖ϑδ‖3m) + ‖%δ|uδ|2‖1

)
,

(34)
provided A < min

{
3m−2

2m , 1
}
.



Proof. We use as test function in the approximative momentum
balance

ϕi(x) =
(x− y)i
|x− y|A

τ2

with τ ≡ 1 in BR0(y), R0 as above, τ ≡ 0 outside B2R0(y),
|∇τ | ≤ C

R0
. Note that

divϕϕϕ =
3−A
|x− y|A

τ2 + g1(x),

∂iϕj =
( δij
|x− y|A

−A(x− y)i(x− y)j
|x− y|A+2

)
τ2 + g2(x)

with g1, g2 in L∞(Ω). Thus we get the estimates from the pressure
term and the convective term. We control the elliptic term provided



1
q = 1− 1

2 −
1

3m > A
3 , implying A < 3m−2

2m for m > 2
3.

Near the boundary, we use to use a similar test function. The
test function due to Frehse, Steinhauer and Weigant, which can
be used for both slip and no slip boundary conditions, leads to
artificial restrictions on m. Assume for a moment that we deal
with a flat part of the boundary which is described by x3 = 0, i.e.
a(x′) = 0, x′ ∈ O ⊂ R2 with the normal vector n = (0, 0,−1)

and t1 = (1, 0, 0), t2 = (0, 1, 0) the tangent vectors. Consider
the points in the neighborhood of the origin. Then the test function
which replaces the test function above can be taken in the form



w(x) = v(x− y), where

v(z) =


1

|z|A
(z1, z2, z3) = (z · t1)t1 + (z · t2)t2

+((0, 0, z3 − a(z′)) · n)n, z3 ≥ 0,

1

|z|A
(z1, z2, 0) = (z · t1)t1 + (z · t2)t2, z3 < 0.

Note that if y ∈ Ω (i.e. y3 ≥ 0), then (w · n)(x) = w3(x) = 0

for x3 = 0. For a general C2 domain we use partition of unity and
local flattening of the boundary. Therefore we get the same result as
in Lemma 1 also in the neighborhood of the boundary, i.e. for any
point in Ω.



We distinguish two cases. For m ≥ 2 we have 3m−2
2m ≥ 1, hence

A < 1 is the only restriction. If m ∈ (2
3, 2), we have A < 3m−2

2m .

For m ≥ 2, passing A→ 1−

Lemma 2. Let b ∈ ((s − 1) γ
γ−1, 1), 1 < s < 2

2−γ , m ≥ 2,
s ≤ 6m

3m+2. Then there exists C independent of δ such that for
any y ∈ Ω ∫

Ω

p(%δ, ϑδ) + (%δ|uδ|2)b

|x− y|
dx

≤ C
(
1 + δ‖%δ‖ββ + ‖p(%δ, ϑδ)‖1

+(1 + ‖ϑδ‖3m)‖uδ‖1,2 + ‖%δ|uδ|2‖1
)
.

(35)



If m < 2, we take 1 ≤ a < γ and relatively easily by Hölder’s
inequality
Lemma 3. Let b ∈ ((s − 1) γ

γ−1, 1), 1 < s < 2
2−γ , A >

max{3a−2γ
a , 3b−2

b }, m ∈ (2
3, 2). Then there exists C independent

of δ such that for any y ∈ Ω

∫
Ω

%aδ + (%δ|uδ|2)b

|x− y|
dx

≤ C
(
1 + δ‖%δ‖ββ + ‖p(%δ, ϑδ)‖1 + (1 + ‖ϑδ‖3m)‖uδ‖1,2

+‖%δ|uδ|2‖1
)max{aγ ,b}.

(36)



Let us consider

−∆h = %aδ + %bδ|uδ|2b −
1

|Ω|

∫
Ω

(%aδ + %bδ|uδ|2b)dx,
∂h

∂n
|∂Ω = 0.

(37)

The unique strong solution can be written

h(y) =

∫
Ω

G(x, y)(%aδ + %bδ|uδ|2b) dx+ l.o.t.; (38)

as G(x, y) ≤ C|x− y|−1, we get



• m ≥ 2

‖h‖∞ ≤ C(1 +A
γ−b/s
bγ+γ−2b), (39)

provided

1 < s <
1

2− γ
, 0 < (s− 1)

γ

γ − 1
< b < 1, s ≤ 6m

3m+ 2
(40)

• 2
3 < m < 2

‖h‖∞ ≤ C(1 +A
a−b/s
ab+a−2b

a
γ +A

a−b/s
ab+a−2bb), (41)



provided

1 < s <
1

2− a
, 0 < (s− 1)

a

a− 1
< b < 1, s ≤ 6m

3m+ 2
,

t >
3a− 2γ

a
, t >

3b− 2

b
, t <

3m− 2

2m
.

(42)

Now

A =

∫
Ω

−∆hu2
δ dx =

∫
Ω

∇h · ∇|uδ|2 dx ≤ 2‖∇uδ‖2B
1
2,

(43)

B =

∫
Ω

|∇h⊗ uδ|2 dx. (44)



Employing once more integration by parts

B = −
∫

Ω

h∆h|uδ|2 dx−
∫

Ω

h∇h · ∇uδ · uδ dx

≤ ‖h‖∞(A+ ‖∇uδ‖2B
1
2),

i.e.

B ≤ ‖h‖∞A+
1

2
‖∇uδ||22‖h‖2∞. (45)

Therefore

A ≤ C‖∇uδ‖22‖h‖∞. (46)



Hence,

A ≤ C
(
1 +A

γ−b/s
bγ+γ−2b

)
if m ≥ 2,

A ≤ C
(
1 +A

a−b/s
ab+a−2b

a
γ +A

a−b/s
ab+a−2bb

)
if 2

3 < m < 2,
(47)

Therefore

• m ≥ 2

1 < s <
1

2− γ
, 0 < (s− 1)

γ

γ − 1
< b < 1,

s ≤ 6m

3m+ 2
,

γ − b/s
bγ + γ − 2b

< 1
(48)



• m ∈ (2
3, 2)

1 < s <
1

2− a
, 0 < (s− 1)

a

a− 1
< b < 1, s ≤ 6m

3m+ 2
,

t >
3a− 2γ

a
, t >

3b− 2

b
, t <

3m− 2

2m
,

a− b/s
ab+ a− 2b

a

γ
< 1,

a− b/s
ab+ a− 2b

b < 1.

(49)

Analyzing the conditions above we have
Lemma 4. Let (%δ,uδ, ϑδ) solve our approximate problem. Let
γ > 1 and m > 2

4γ−3.



Then there exists s > 1 such that

supδ>0 ‖%δ‖γs < +∞
supδ>0 ‖%δuδ‖s < +∞
supδ>0 ‖%δ|uδ|2‖s < +∞
supδ>0 ‖uδ‖1,2 < +∞
supδ>0 ‖ϑδ‖3m < +∞
supδ>0 ‖ϑ

m/2
δ ‖1,2 < +∞

supδ>0 δ‖%
β+(s−1)γ
δ ‖1 < +∞.

(50)

Moreover, we can take s > 6
5 provided γ > 5

4, m >

max{1, 2γ+10
17γ−15}.



8.3 Limit passage δ → 0+:

Continuity equation

∫
Ω

%u · ∇ψ dx = 0 (51)

for all ψ ∈ C1(Ω;R)

Momentum equation∫
Ω

(
− %(u⊗ u) : ∇ϕϕϕ+ S(ϑ,∇u) : ∇ϕϕϕ

−p(%, ϑ) divϕϕϕ
)

dx =

∫
Ω

%f ·ϕϕϕ dx
(52)

for all ϕϕϕ ∈ C1
n(Ω;R3)



Entropy inequality∫
Ω

(
ϑ−1S(ϑ,∇u) : ∇u + κ(ϑ)

|∇ϑ|2

ϑ2

)
ψ dx

≤
∫

Ω

(
κ(ϑ)
∇ϑ : ∇ψ

ϑ
− %s(%, ϑ)u · ∇ψ

)
dx

+

∫
∂Ω

L

ϑ
(ϑ−Θ0)ψ dσ,

(53)

for all ψ ∈ C1(Ω;R), nonnegative



Global total energy balance∫
∂Ω

L(ϑ−Θ0) dσ =

∫
Ω

%f · u dx (54)

(total energy balance with test function ψ ≡ 1)



Total energy balance∫
Ω

((
− 1

2
%|u|2 − %e(%, ϑ)

)
u · ∇ψ

+κ(ϑ)∇ϑ : ∇ψ
)

dx

+

∫
∂Ω

(
L(ϑ−Θ0)ψ dσ =

∫
Ω

%f · uψ dx

+

∫
Ω

(
− S(ϑ,∇u)u + p(%, ϑ)u

)
· ∇ψ dx

(55)

for all ψ ∈ C1(Ω;R). We can pass only in certain situations, when
we have better a priori estimates! We need s > 6

5 and m > 1.

We need to show strong convergence of the density!



8.4 Strong convergence of the density

8.4.1 Effective viscous flux

Using as test function ζ(x)∇∆−1(1ΩTk(%δ)) with Tk(z) =

kT (zk), k ∈ N for

T (z) =


z for 0 ≤ z ≤ 1,

concave on (0,∞),

2 for z ≥ 3,

in the approximative balance of momentum, and ζ(x)∇∆−1(1ΩTk(%))



in its limit version we can deduce

p(%, ϑ)Tk(%)−
(4

3
µ(ϑ) + ξ(ϑ)

)
Tk(%) divu

= p(%, ϑ) Tk(%)−
(4

3
µ(ϑ) + ξ(ϑ)

)
Tk(%) divu

(56)

a.e. in Ω.



8.4.2 Oscillation defect measure

We do not have L2-bound on the density and thus we do not know
whether the renormalized continuity equation for the limit holds. To
get it, we introduce:

Oscillation defect measure

oscq[%δ → %](Q) = sup
k>1

(
lim sup
δ→0+

∫
Q

|Tk(%δ)− Tk(%)|q dx
)
(57)



We have

%δ ⇀ % in L1(Ω;R),

uδ ⇀ u in Lp(Ω;R3),

∇uδ ⇀ ∇u in Lp(Ω;R3×3)

and
oscq[%δ → %](Ω) <∞ (58)

for q > p′, then the limit density and velocity satisfy the renormalized
continuity equation.

Assuming m > max{ 2
3(γ−1),

2
3}, it can be verified that (58)

holds true with some 2 < q < γ + 1. This is the point giving
additional restriction m > 2

3(γ−1).



8.4.3 Strong convergence of the density

We also get

lim sup
δ→0+

∫
Ω

|Tk(%δ)− Tk(%)|γ+1 dx

≤ C
∫

Ω

(
p(%, ϑ)Tk(%)− p(%, ϑ) Tk(%)

)
dx,

(59)

lim sup
δ→0+

∫
Ω

1

1 + ϑ
|Tk(%δ)− Tk(%)|γ+1 dx

≤ C
∫

Ω

1

1 + ϑ

(
p(%, ϑ)Tk(%)− p(%, ϑ) Tk(%)

)
dx.

(60)



As (%δ,uδ) and (%,u) verify the renormalized continuity equation,
we have: ∫

Ω

Tk(%) divu dx = 0

and∫
Ω

Tk(%δ) divuδ dx = 0, i.e.

∫
Ω

Tk(%) divu dx = 0

To this aim, use

div (b(%)u) +
(
%b′(%)− b(%)

)
divu = 0 in D′(R3)

with
b(%) = %

∫ %

1

Tk(z)

z2
dz,

i.e. %b′(%)− b(%) = Tk(%).



Using the effective viscous flux identity we get that∫
Ω

1
4
3µ(ϑ) + ξ(ϑ)

(
p(%, ϑ)Tk(%)− p(%, ϑ) Tk(%)

)
dx

=

∫
Ω

(
Tk(%)− Tk(%)

)
divu dx.

(61)

As limk→∞ ‖Tk(%) − %‖1 = limk→∞ ‖Tk(%) − %‖1 = 0, the
definition of the oscillation defect measure together with (58)

lim
k→∞

∫
Ω

1
4
3µ(ϑ) + ξ(ϑ)

(
p(%, ϑ)Tk(%)− p(%, ϑ) Tk(%)

)
dx = 0.



Hence

lim
k→∞

lim sup
δ→0+

∫
Ω

1

1 + ϑ
|Tk(%δ)− Tk(%)|γ+1 dx = 0,

which implies

lim
k→∞

lim sup
δ→0+

∫
Ω

|Tk(%δ)− Tk(%)|q dx = 0

with some q > 2, the same as for the oscillation defect measure.



Hence, as

‖%δ−%‖1 ≤ ‖%δ−Tk(%δ)‖1+‖Tk(%δ)−Tk(%)‖1+‖Tk(%)−%‖1,

we have
%δ → % in L1(Ω;R)

which implies

%δ → % in Lp(Ω;R) ∀1 ≤ p < sγ.

The proof of strong convergence is finished.



We proved:
Theorem 1. Let Ω ∈ C2 be a bounded domain in R3, f ∈
L∞(Ω;R3), Θ0 ≥ K0 > 0 a.e. at ∂Ω, Θ0 ∈ L1(∂Ω). Let
γ > 1, m > max

{
2
3,

2
3(γ−1)

}
.

Let Ω be not axially symmetric. Then there exists a
variational entropy solution to our problem. Moreover, (%,u) is a
renormalized solution to the continuity equation.

Additionally, if m > 1 and γ > 5
4, then the solution is a weak

solution, i.e. also the weak formulation of the total energy balance
is fulfilled.



9 Case: 0 ≤ α < 1

We now discuss the new results from the paper Kreml, M.P.
(2013). We consider for simplicity Ω not axially symmetric and
λ = 0. We have in this case Korn’s inequalities of the form

‖u‖1,p ≤ C
(∫

Ω

1

ϑ
S(ϑ,∇u) : ∇u dx

)1
2‖ϑ‖

1−α
2

3m ,

where p = 6m
3m+1−α < 2. Therefore we get similarly as above

uniform estimates

‖ϑδ‖3m ≤ C(1 + ‖%δuδ‖1)

‖uδ‖1,p ≤ C(1 + ‖ϑδ‖
1−α

2
3m ).



Recall: for 1 ≤ a ≤ γ, 0 < b < 1

A =

∫
Ω

(%aδ |uδ|2 + %bδ|uδ|2b+2) dx (62)

We have

‖uδ‖1,2 ≤ C
(
1 +A

(1−α)(a−b)
2(p(a−b)+2b(a−1))

)
‖ϑδ‖3m ≤ C

(
1 +A

a−b
p(a−b)+2b(a−1)

)∫
Ω

(
%sγδ + %

(s−1)γ
δ p(%δ, ϑδ) + (%δ|uδ|2)s + δ%

β+(s−1)γ
δ

)
dx

≤ C(1 +A
2(sa−b)

p(a−b)+2b(a−1)),
(63)

provided 1 ≤ a ≤ γ, 1 < s < p
2+p−2a, 0 < a(2s−p)

2a−p < b < 1,
s ≤ 6m

3m+1+α, m > 1+α
3 . The last estimate follows from Bogovskii

type estimates.



Next we want to use of the test functions of the type

ϕi(x) =
(x− y)i
|x− y|A

.

We have to work separately near the boundary and in the interior.
The procedure is similar to the previous case, with only changes
corresponding to the fact that α < 1 and p = p(α,m) < 2. We
get as before
Lemma 5.We have

sup
y∈Ω

∫
Ω

(p(%δ, ϑδ)
|x− y|A

+
%δ|uδ|2

|x− y|A
)

dx

≤ C
(
1 + ‖p(%δ, ϑδ)‖1 + ‖uδ‖1,2(1 + ‖ϑδ‖3m) + ‖%δ|uδ|2‖1

)
,

(64)
provided A < min

{
3m−1−α

2m , 1
}
.



The main difference appears at the step when we want to
deduce from the estimate above some information about the density,
momentum and kinetic energy. The approach based on the L2,
theory, which used the properties of the Green function for a certain
elliptic problem, is not possible to apply. We return to the idea
used in the paper by Novotný, Březina which was based on certain
properties of Bessel kernels. However, their approach was also based
on the L2 theory which we have to generalize to the Lp setting.



We will consider Bessel kernels Gα in space RN which are defined
for any real index α via the Fourier transform

Gα(x) := F−1((1 + |ξ|2)−
α
2 ) (65)

It can be shown that Gα is radially decreasing symmetric convolution
kernel which is real and positive. It has exponential decay at infinity
and following asymptotics at zero

Gα(x) ≤ C(α,N)|x|α−N as |x| → 0, for α ∈ (0, N).

(66)
Especially for α = 1 we have

G1(x) = C|x|−1K1(|x|),



where Kν(r) are the MacDonald functions, with the following
properties

Kν(r) ∼ Cr−ν as r → 0, Kν(r) ∼ Cr1/2e−r as r → +∞

(Kν(r))
′ =

ν

r
Kν(r)−Kν+1(r).

For derivatives of Bessel kernels (denote r = |x|)

d

dr
Gα(r) = Cr

α−N
2 KN−α+2

2
(r).

Using the results on the correspondance of behaviour of the
function and its Fourier transform it can be shown that



Lemma 6. For 1 < r < 3
2 we have

(G1 ∗Gr1)(x) ≤ C|x|1−2r as |x| → 0.

The Bessel potential space Lα,p

Lα,p(RN) :=
{
ϕ = Gα ∗ f, f ∈ Lp(RN)

}
endowed with the norm

‖Gα ∗ f‖Lα,p(RN) := ‖f‖Lp(RN).



It is well known that for α ∈ N

Wα,p(RN) = Lα,p(RN)

with equivalence of norms.

Our method relies on the following result:
Theorem 2. Let G be radially decreasing convolution kernel and
let µ ∈ M+(RN). Then for 1 < p ≤ q < ∞ the following
statements are equivalent:



1) There is a constant A1 such that(∫
RN
|G ∗ f |qdµ

)1
q

≤ A1‖f ||Lp

for all f ∈ Lp(RN).

2) There is a constant A2 such that

‖G ∗ µK‖Lp′ ≤ A2µ(K)
1
q′

for all compact sets K.

Moreover the constants A1, A2 are comparable, in fact we can
choose A1 = A2.



For components of our velocity field uiδ ∈ W 1,p(Ω) we find
unique f i ∈ Lp(Ω) such that E(uiδ) = G1 ∗ f i, where E :

W 1,p(Ω) → W 1,p(RN) is a continuous extension operator. We
apply the theorem above in the following way, the spirit is the
same as in Březina, Novotný: We take N = 3, p = q ∈ (1, 2),
dµ(x) = (%aδ + (%δ|uδ|2)b)(x) dx, G = G1 and f = f i defined
above. We define %δ = 0 outside Ω.

Denoting h = (%aδ + (%δ|uδ|2)b) we can show that∫
R3
|G1 ∗ h|K|p

′
dx

≤ C(Ω)‖(G1 ∗Gp
′−1

1 ) ∗ hp
′−1|K‖L∞(R3)‖h‖L1(K)



and we denote Ap
′

2 := C(Ω)‖(G1 ∗ Gp
′−1

1 ) ∗ hp′−1‖L∞(Ω). Thus
the statement 1) of Theorem above is satisfied and we conclude

‖(%aδ + (%δ|uδ|2)b)|uδ|p‖L1(Ω)

∼
3∑
i=1

∫
R3
|E(uiδ)|p(x)(%aδ + (%δ|uδ|2)b)(x)dx

≤
3∑
i=1

Ap2‖E(uiδ)‖
p

L1,p(R3)
≤ CAp2‖uδ‖

p
W 1,p(Ω)

.

Using the lemma on the asymptotic behaviour of the convolution



of Bessel kernels we have

Ap
′

2 ≤ C sup
x0∈Ω

∫
Ω

(%aδ + (%δ|uδ|2)b)p
′−1

|x− x0|2p′−3
dx

provided p′ > 5
2.

Therefore, assuming

max

{
γ(3− p)− aA
γ(p− 1)− a

,
(3− p)− bA
p− 1− b

}
< 3



we get, combining estimates above

A = ‖(%aδ + (%δ|uδ|2)b)|uδ|p‖L1(Ω) ≤ CA
p
2‖uδ‖

p
W 1,p(Ω)

≤ C

(
sup
x0∈Ω

∫
Ω

(%aδ + (%δ|uδ|2)b)
1
p−1(x)

|x− x0|
3−p
p−1

dx

)p−1

‖uδ‖pW 1,p(Ω)

≤ C‖uδ‖pW 1,p(Ω)

( sup
x0∈Ω

∫
Ω

%γδ
|x− x0|A

)a
γ

+

(
sup
x0∈Ω

∫
Ω

%δ|uδ|2

|x− x0|A

)b



Therefore finally

A ≤ C‖uδ‖pW 1,p(Ω)
×((

1 + δ‖%δ‖ββ + ‖p(%δ, ϑδ)‖1 + (1 + ‖ϑδ‖α3m)‖uδ‖1,p + ‖%δ|uδ|2‖1
)a
γ

+
(

1 + δ‖%δ‖ββ + ‖p(%δ, ϑδ)‖1 + (1 + ‖ϑδ‖α3m)‖uδ‖1,p + ‖%δ|uδ|2‖1
)b)

and we may proceed as in the case with α = 1, with only more
complicated set of conditions on the parameters γ < 1, m > 0 and
α ∈ [0, 1].

Let us only mention under which conditions we get a solution for
special values of α. First, for α = 1 we reobtain the result from the
previous section. Next, for



α = 1
2:

Weak solution:

m ∈ (18+
√

409
34 , 3

2] γ > (6m+3)(10m−1)
6m2−72m−5

m ∈ (3
2,∞) γ > 2m(10m−1)

16m2−18m+1

Variational entropy solution:

m ∈ (5
6,

3
2] γ > 6m(6m+3)

48m2−30m−3

m ∈ (3
2,

8
3] γ > 3m

3m−2

m ∈ (8
3,∞) γ > 1 + 8

9m



α = 0:
Weak solution:

m ∈ (9+
√

65
8 , 9+

√
77

2 ] γ > m(5m−1)
4m2−9m+1

m ∈ (9+
√

77
2 ,∞) γ > 4m2+8m−1

3m2

Variational entropy solution:

m ∈ (5
3,

8
3] γ > 3m

3m−4

m ∈ (8
3,∞) γ > 1 + 8

3m



Generally, for m sufficiently large we have the following

Existence of weak solution:

α ∈ [0, 1
3] γ > 3α+4

3α+3

α ∈ (1
3, 1] γ > 5

4

Existence of variational entropy solution:

α ∈ [0, 1] γ > 1



T H A N K Y O U

F O R Y O U R

A T T E N T I O N !
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