

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Streamlining the Applied Mathematics Studies at Faculty of Science of Palacký University in Olomouc CZ.1.07/2.2.00/15.0243

International Conference Olomoucian Days of Applied Mathematics

ODAM 2013

Department of Mathematical analysis and Applications of Mathematics

Faculty of Science

Palacký Univerzity Olomouc

BAYESIAN STATISTICS AND FUZZY INFORMATION

Reinhard Viertl

Technische Universität Wien

www.statistik.tuwien.ac.at/public/viertl/

BAYESIAN INFERENCE

$$X \sim f(\cdot | \theta), \ \theta \in \Theta, \ \tilde{\theta}$$
 Stochastic Qu.
 $\pi(\cdot)$ a-priori distribution on Θ
 x_1, \dots, x_n Sample information
Updating of the a-priori distribution

$$\pi(\theta | x_1, \dots, x_n) = \frac{\pi(\theta) \cdot \ell(\theta, x_1, \dots, x_n)}{\int_{\Theta} \pi(\theta) \cdot \ell(\theta, x_1, \dots, x_n) d\theta} \quad \forall \theta \in \Theta$$

$$\frac{1}{\int_{\Theta} \pi(\theta) \cdot \ell(\theta, x_1, \dots, x_n) d\theta} \quad \ell(\theta, x_1, \dots, x_n) = \prod_{i=1}^{n} f(x_i | \theta)$$

FUZZY INFORMATION

- · Fuzzy Data
- · Fuzzy a-priori Knowledge
- · Fuzzy Probabilities
- · Soft Computing ECSC

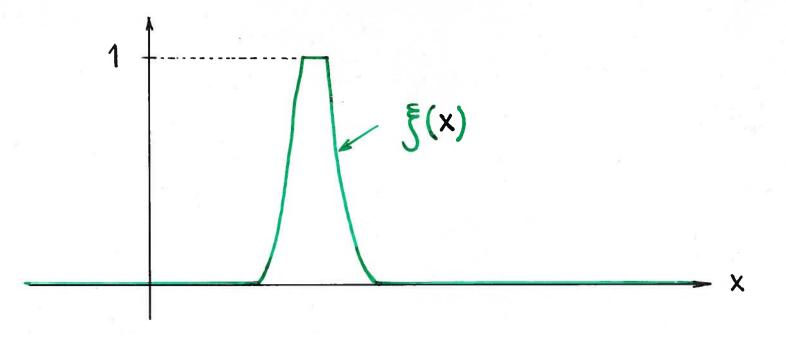
FUZZY DATA

- · Environmental Data
- · Recovering Times
- · Quality of Life Data
- · Migration Data

· Precision Measurement Data

MEASUREMENT RESULTS

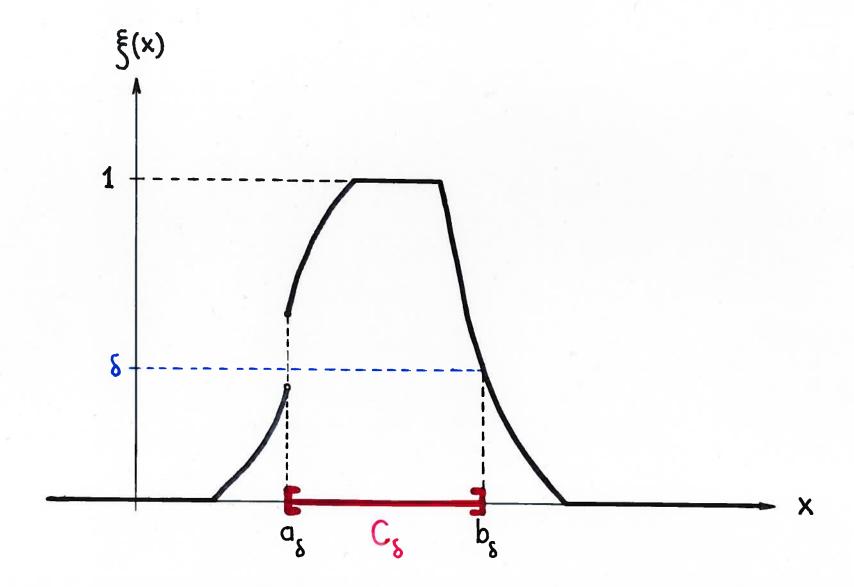
Not precise numbers but more or less non-precise Mathematical model: Fuzzy number x^* Characterizing function $\xi(\cdot)$

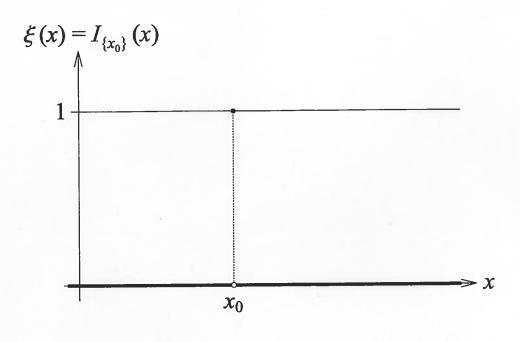


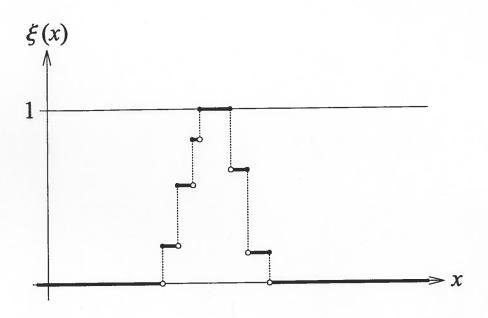
Characterizing Function §(·)

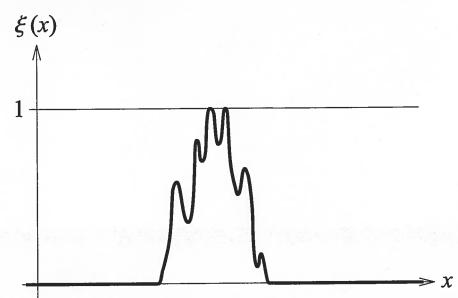
$$(1) \quad 0 \le \xi(x) \le 1 \quad \forall x \in \mathbb{R}$$

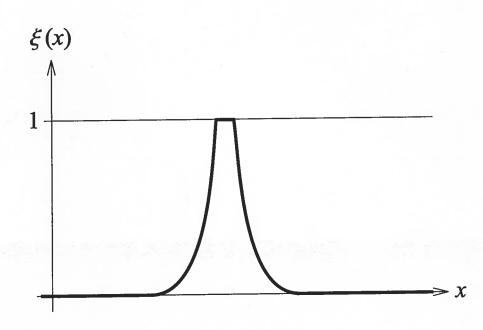
- (2) support [\xi(.)] is bounded
- (3) $\forall \delta \in (0,1]$ the δ -Cut C_{δ} $C_{\delta} = \{x \in \mathbb{R} : \xi(x) \geq \delta\} \neq \emptyset$ is a closed interval $[a_{\delta}, b_{\delta}]$

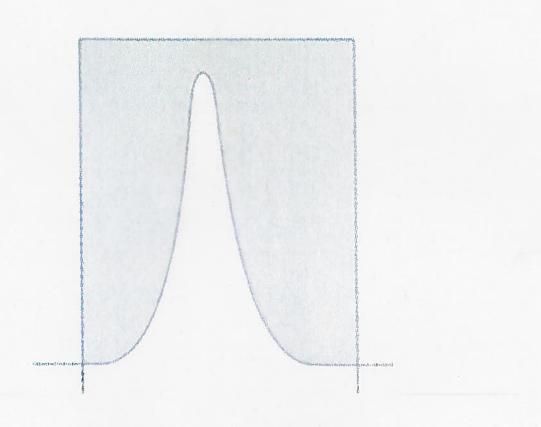


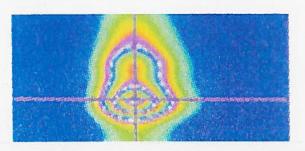












Lemma: For a characterizing function of a fuzzy number the following holds:

$$\xi(x) = \max \left\{ \delta \cdot \mathbb{1}_{C_{\delta}[\xi(\cdot)]}(x) : \delta \in [0,1] \right\}$$

$$\forall x \in \mathbb{R}$$

$$\forall x \in \mathbb{R}$$

Remark: Not all families of nested closed intervals $[a_{\xi},b_{\xi}]$ are the δ -cuts of a fuzzy number.

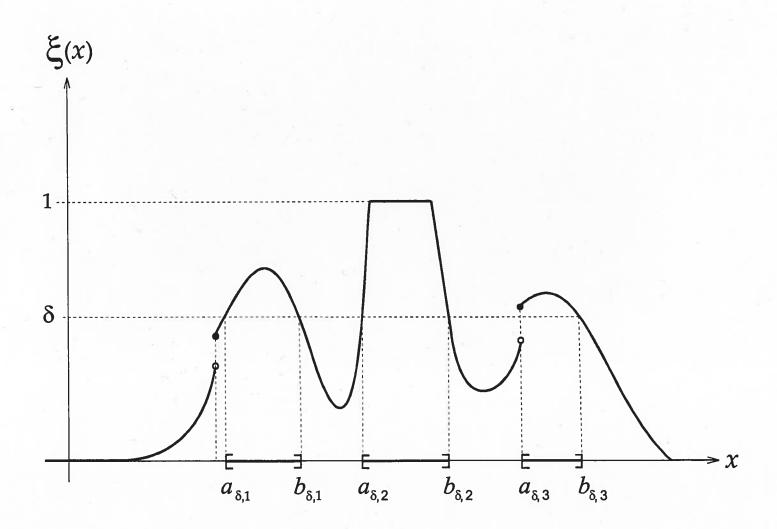
But the following definition yields a fuzzy number:

$$\xi(x) := \sup \left\{ \delta \cdot \mathbb{1}_{\left[a_{s},b_{s}\right]}(x) : \delta \in \left[0,1\right] \right\} \quad \forall x \in \mathbb{R}$$

NON-PRECISE NUMBERS

- x^* , Characterizing Function $\xi(\cdot)$
- (1) Support $[\xi(\cdot)] \subseteq [a,b]$ compact interval
- (2) All δ -Cuts $C_{\delta} := \{x \in \mathbb{R} : \xi(x) \ge \delta\}$ are non-empty with

$$C_{\delta} = \bigcup_{j=1}^{k_{\delta}} \left[a_{\delta,j} ; b_{\delta,j} \right], \quad k_{\delta} \in \mathbb{N}$$

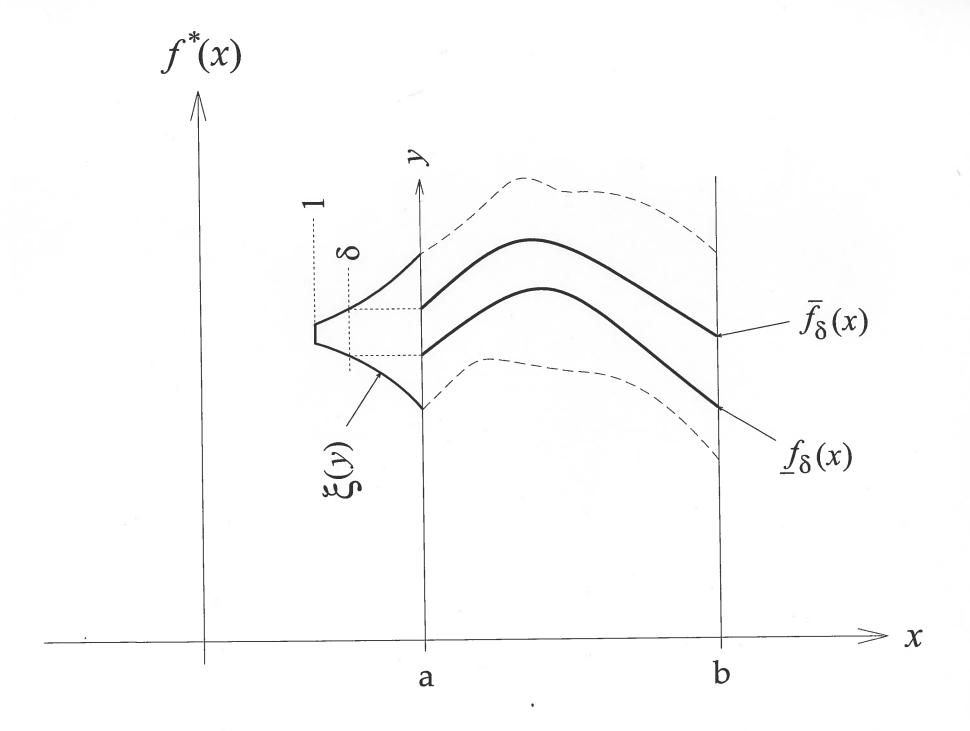


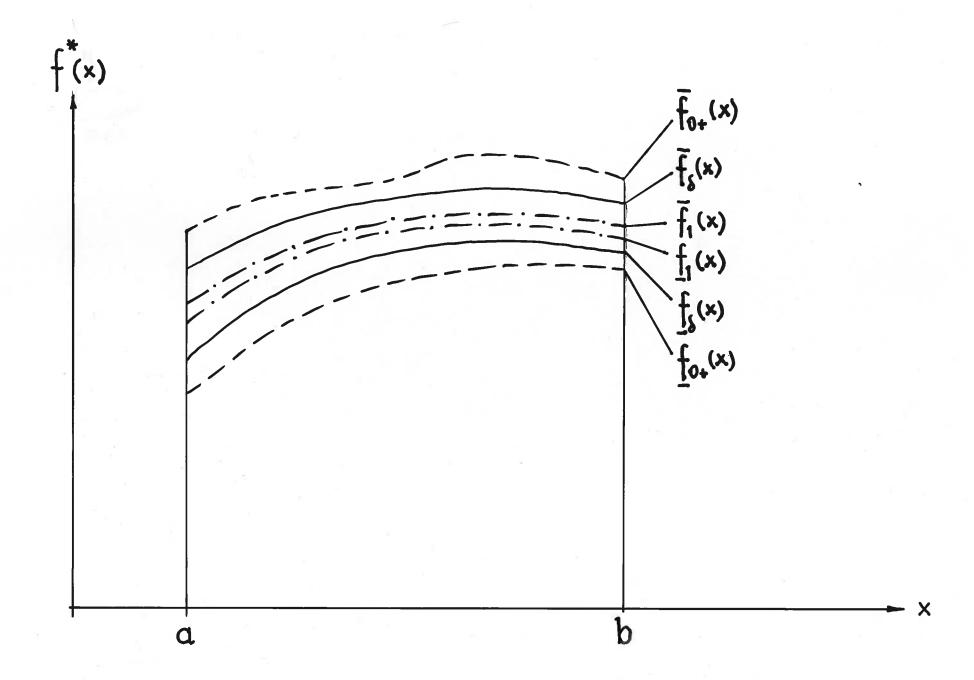
FOR FUZZY DATA ?

Fuzzy valued functions
$$f^*: M \to \mathcal{F}_{\mathbf{I}}(\mathbb{R})$$

 $f^*(x) = y^* \cong \xi_x(\cdot) \quad \forall x \in M$
 δ -level functions $f_{\delta}(\cdot)$ and $f_{\delta}(\cdot)$
defined by $C_{\delta}[f^*(x)] = [f_{\delta}(x), f_{\delta}(x)] \quad \forall x \in M$
 $\forall \delta \in (0, 1]$

For M = R &-level curves (real functions)





FUZZY PROBABILITY DENSITY

Generalized densities f*(.) on R:

 $f^*(.)$ fuzzy function with δ -level functions $f_s(\cdot)$ and $\bar{f}_s(\cdot)$ integrable with $\iint_{S} (x) dx < \infty \quad \forall \delta \in (0,1]$ and 3 classical density f(.) on R with $f_1(x) \le f(x) \le f_1(x) \quad \forall x \in \mathbb{R}$

The fuzzy probability $P^*(B)$ of $B \in \mathcal{B}$ is a fuzzy interval

COMBINED FUZZY SAMPLE

Sample
$$x_1^*, \dots, x_n^*$$

$$\xi_1(\cdot), \dots, \xi_n(\cdot)$$

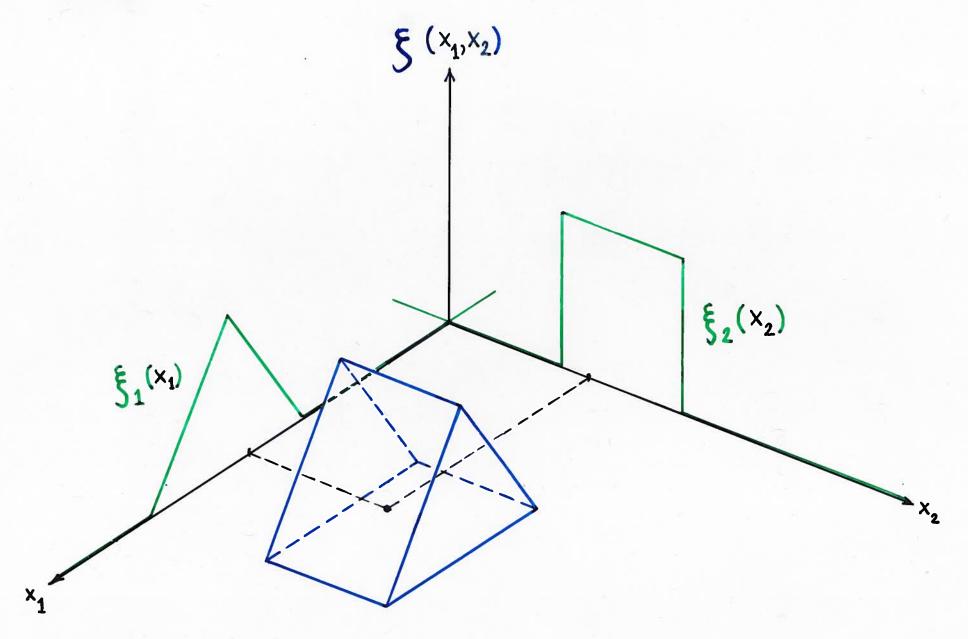
$$x_i^* \text{ Fuzzy Element of Observation Space M}$$

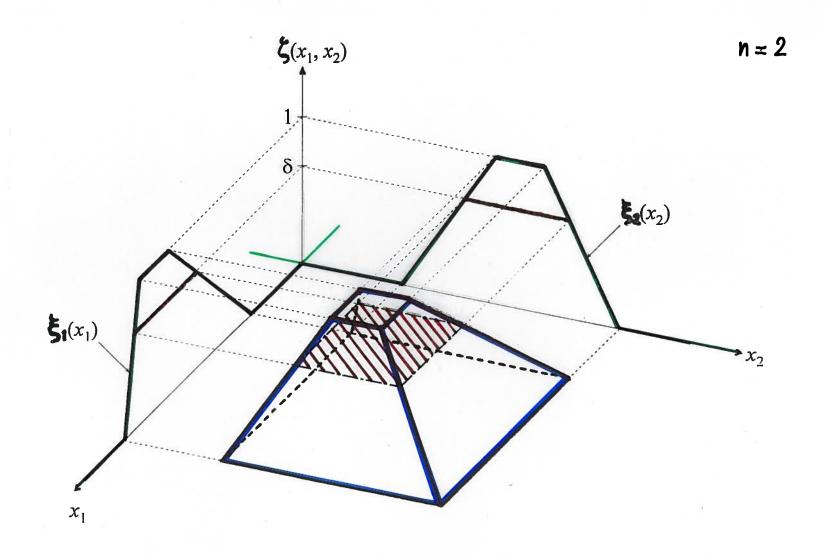
$$M^n = \{ \underline{x} = (x_1, \dots, x_n) : x_i \in M \} \text{ Sample Space}$$

$$\underline{x}^* \text{ Fuzzy Element of M}^n \text{ with VCF } \xi(\cdot)$$

$$\xi(x_1, \dots, x_n) = T_n \left(\xi_1(x_1), \dots, \xi_n(x_n) \right) \quad \forall (x_1, \dots, x_n)$$

$$\underline{x}^* \text{ Combined Fuzzy Sample}$$





$$\xi(\underline{x}) := \min_{i=1(1)n} \xi_i(x_i)$$

PROBLEMS

Sequential updating

Precise a-priori density

ALTERNATIVE SOLUTION

Based on 8-level functions

$$\overline{\pi}_{\delta}(.), \overline{\ell}_{\delta}(.,\underline{x}^{*}), \overline{\pi}_{\delta}(.|\underline{x}^{*})$$

$$\underline{\mathbb{T}}_{\delta}(\cdot)$$
, $\underline{\ell}_{\delta}(\cdot;\underline{x}^{*})$, $\underline{\mathbb{T}}_{\delta}(\cdot|\underline{x}^{*})$

LIKELIHOOD FOR FUZZY DATA

$$\underline{x}^* \text{ combined fuzzy sample with v.c.f. } f(\cdot)$$

$$l^*(\theta; \underline{x}^*) \text{ fuzzy value of the likelihood } l(\theta; \underline{x})$$

$$\text{ with c.f. } \eta_{\theta}(\cdot) \text{ defined by }$$

$$\eta_{\theta}(y) = \left\{ \sup \left\{ f(\underline{x}) : l(\theta; \underline{x}) = y \right\} \text{ if } l^{-1}(\{y\}) \neq \emptyset \right\} \quad \forall y \in \mathbb{R}$$

$$\text{if } l^{-1}(\{y\}) = \emptyset \right\} \quad \forall y \in \mathbb{R}$$

Remark: For precise data \underline{x} the indicator function of $\ell(\theta,\underline{x})$ is obtained

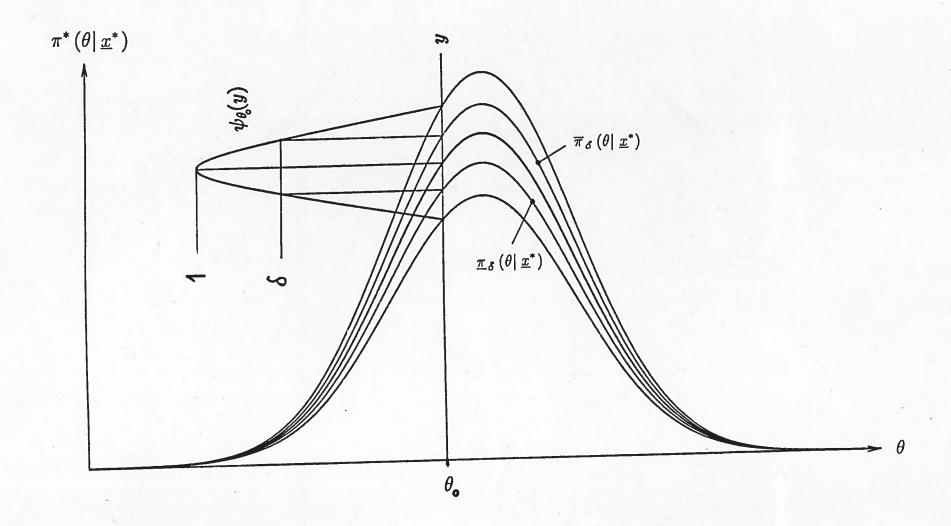
GENERALIZED BAYES' THEOREM

8-level curves of the fuzzy a-posteriori density

$$\overline{\pi}_{\delta}(\theta | \underline{x}^{*}) = \frac{\overline{\pi}_{\delta}(\theta) \overline{\ell}_{\delta}(\theta; \underline{x}^{*})}{\int_{\underline{\theta}} \frac{1}{2} \left[\underline{\pi}_{\delta}(\theta) \underline{\ell}_{\delta}(\theta; \underline{x}^{*}) + \overline{\pi}_{\delta}(\theta) \overline{\ell}_{\delta}(\theta; \underline{x}^{*})\right] d\theta}$$

$$\underline{\pi}_{\delta}(\theta | \underline{x}^{*}) = \frac{\underline{\pi}_{\delta}(\theta) \underline{\ell}_{\delta}(\theta, \underline{x}^{*})}{\int_{\underline{\delta}} \underline{1} \left[\underline{\pi}_{\delta}(\theta) \underline{\ell}_{\delta}(\theta, \underline{x}^{*}) + \overline{\pi}_{\delta}(\theta) \overline{\ell}_{\delta}(\theta, \underline{x}^{*})\right] d\theta}$$

$$\forall \theta \in \Theta$$



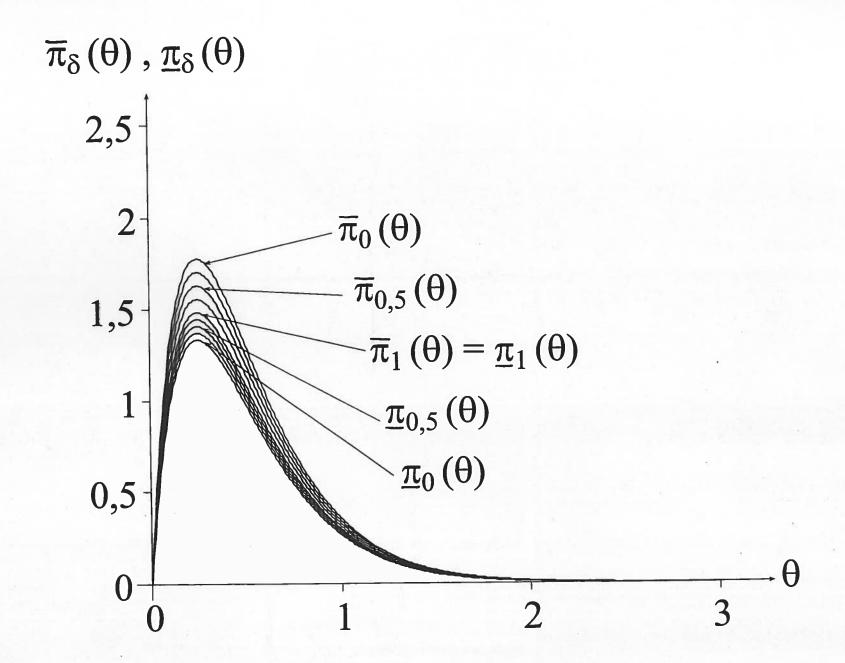
EXAMPLE
$$X \sim E_{x_{\theta}}, \theta \in \Theta = (0, \infty)$$

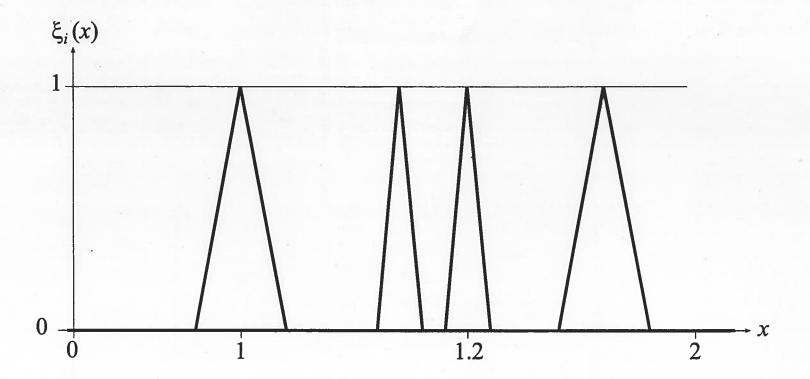
$$f(x|\theta) = \frac{1}{\theta} \exp\left\{-\frac{x}{\theta}\right\} \cdot I_{(0,\infty)}(x)$$

Fuzzy a-priori distribution

$$\pi^*(\cdot)$$
 fuzzy gamma density

$$\frac{\pi}{\pi_{\delta}}(\cdot)$$
 upper δ -level curves $\underline{\pi}_{\delta}(\cdot)$ lower δ





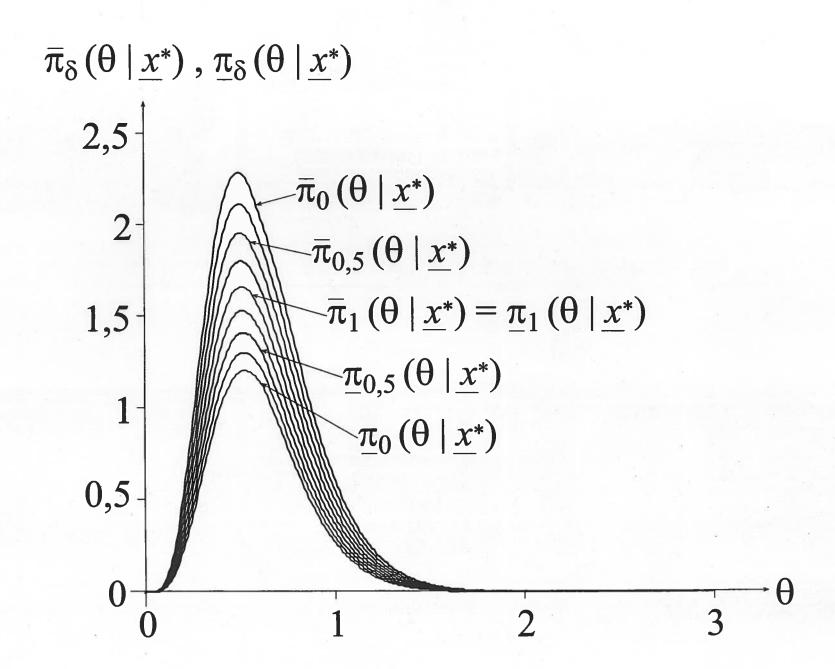
COMBINED FUZZY SAMPLE

$$\frac{x^*}{x^*} = (x_1, x_2, x_3, x_4)^*$$

vector char. function $\xi(\cdot,\cdot,\cdot,\cdot)$

$$\int (x_1, x_2, x_3, x_4) = \min \left\{ \int_1^2 (x_1), \int_2^2 (x_2), \int_3^2 (x_3), \int_4^2 (x_4) \right\}$$

$$T_{\delta}(\cdot|x^*)$$
 by gen. Bayes' theorem $T_{\delta}(\cdot|x^*)$



PREDICTIVE DENSITIES

$$X \sim f(\cdot | \theta), \theta \in \Theta$$
 Stochastic Model $\pi(\cdot)$ a-priori density $(x_1, \dots, x_n) = D$ data $\Rightarrow \pi(\cdot | D)$ a-posteriori density

$$p(\cdot|D)$$
 predictive density
$$p(x|D) = \int_{\Theta} f(x|\theta) \cdot \pi(\theta|D) d\theta \quad \forall x \in M_X$$

FUZZY PREDICTIVE DENSITY

$$p^{*}(\cdot \mid D^{*})$$

$$p^{*}(x \mid D^{*}) = \int_{\Theta} f(x \mid \theta) \circ \pi^{*}(\theta \mid D^{*}) d\theta \qquad \forall x \in M_{\chi}$$

$$\mathcal{J}_{\delta} := \left\{ g(\cdot) \text{ density on } \Theta : \underline{\pi}_{\delta}(\theta) \leq g(\theta) \leq \overline{\pi}_{\delta}(\theta) \forall \theta \in \Theta \right\}$$

$$\alpha_{\delta} := \inf \left\{ \int_{\Theta} f(x \mid \theta) g(\theta) d\theta : g(\cdot) \in \mathcal{J}_{\delta} \right\}$$

$$\forall \delta \in (0, 1]$$

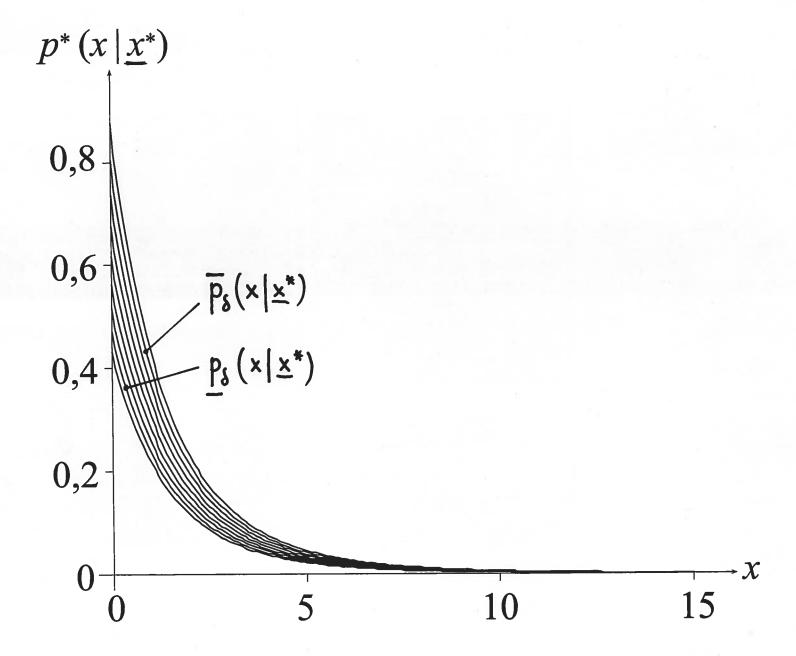
$$b_{\delta} := \sup \left\{ \int_{\Theta} f(x \mid \theta) g(\theta) d\theta : g(\cdot) \in \mathcal{J}_{\delta} \right\}$$

The nested family of intervals [as; bs] defines a fuzzy number by the construction lemma:

$$\psi_{x}(y) := \sup \left\{ \delta \cdot \mathbf{1}_{\left[a_{\delta}, b_{\delta}\right]}(y) : \delta \in \left[0, 1\right] \right\} \quad \forall y \in \mathbb{R}$$

$$p^{*}(x|D^{*}) \triangleq \psi_{x}(\cdot)$$

For variable x this is a fuzzy density



CONCLUSIONS

- · Fuzziness can be described quantitatively
- · Statistics based on fuzzy information is possible: Two different uncertainties
- · Kolmogorov's probability concept has to be generalized
- · Hybrid approach: Fuzzy and Stochastics

SOFTWARE

· Some Programs

· Under Development:

SAFD, ECSC at Mieres

SOME REFERENCES

- T. Ross et al. (Eds.): Fuzzy Logic and Probability Applications - Bridging the Gap, ASA and SIAM, Philadelphia, 2002
- C. Borgelt et al. (Eds.): Combining Soft Computing and Statistical Methods in Data Analysis, Springer, Berlin, 2010
- R. Viertl: Statistical Methods for Fuzzy Data, Wiley, Chichester, 2011