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Basic Concepts.

I Max-separable function f : Rn 7−→ R:

f (x) = max
j∈J

fj(xj),

where J = 1, . . . , n, x = (x1, . . . , xn).

I Special cases:
(max,+)-linear functions

f (x) = max
j∈J

(cj + xj),

(max,min)-linear functions

f (x) = max
j∈J

(min(cj , xj)) = max
j∈J

(cj ∧ xj).
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Basic Concepts.

I System of max-separable inequalities:

max
j∈J

(aij ∧ rij(xj)) ≥ bi , i ∈ I , (1)

max
j∈J

(aij ∧ rij(xj)) ≤ bi , i ∈ K , (2)

x j ≤ xj ≤ x j , j ∈ J, (3)

where aij , , bi , x j , x j ∈ R, rij : R 7−→ R, Range(rij) = R,
continuous and strictly increasing functions, I , K finite index
sets, α ∧ β ≡ min(α, β) for α, β ∈ R.

I If rij(xj) = dij + xj and aij sufficiently large, we obtain a
(max,+)-linear system.

I If rij(xj) = xj , we obtaining a (max,min)−linear system.
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I [Vorobjov], [Korbut], [Carre], [Cuninghame-Green],
[Gondran], [Minoux], [Helbig], [Nachtigal], [Olsder], [Maslov],
[Litvinov], [Krivulin], [Pap], [Gaubert], [Akian], [de la Ponte],
[Sergeyev], [Nitica], [Singer], [Nedoma], [Butkovic], [Gavalec],
[Cechlarova], and others.
(R,⊕,⊗) = (max,+), (R,⊕,⊗) = (max,min) and others

f (x) = Σ⊕j (cj ⊗ xj) = c1 ⊗ x1 ⊕ . . . cn ⊗ xn

(⊕,⊗)-linear functions.

I Extremal algebra, path algebra, max-min algebra, max-plus
algebra, fuzzy algebra, idempotent algebra, tropical algebra etc

I Applications to machine time scheduling, capacity and
reliability of networks, discrete event problems, fuzzy set
problems.
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Motivating Example 1

I Example 1.

I aij ..............................capacity of link DiPj ;

I xj ................capacity of link PjT (to be found);

I aij ∧ xj ...........capacity of DiPjT ;

I ai (x) = maxj∈J = (aij ∧ xj);

I Requirements:
ai (x) = bi , ∀i ∈ I or bi ≤ ai (x) ≤ bi ∀i ∈ I
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Motivating Example 2

I Example 2.

I Let us assume that we have m fuzzy sets Ai ,
i ∈ I ≡ {1, . . . ,m} with a finite support J ≡ {1, . . . , n} and
membership functions µi : J → [0, 1]. We have to find fuzzy
set X with membership function µX : J → [0, 1]. Let
functions µiX : J → [0, 1] be defined as follows:

I

µiX (j) ≡ µi (j) ∧ µX (j),

where symbol ∧ is used to denote the minimum of two
numbers, i.e. α ∧ β ≡ min(α, β) for any real numbers α, β.
Then for each i ∈ I function µiX is the membership function
of the intersection of fuzzy set Ai and X .
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Motivating Example 2 - conitnued.

I The expressions

Hi (X ) ≡ max
j∈J

(µiX (j))

are the heights of the intersections of fuzzy sets Ai ,X for all
i ∈ I .

I We require that the heights Hi (X ) are equal b̂i for all i ∈ I ,
i.e.

I

Hi (X ) ≡ max
j∈J

(µiX (j)) = b̂i , ∀i ∈ I . (∗)
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Motivating Example 2 - conitnued.

I Let us set aij ≡ µi (j), xj ≡ µX (j) for all i ∈ I , j ∈ J.

I Then in this new notations relations (*) have the form

I

max
j∈J

(aij ∧ xj) = b̂i ,∀i ∈ I ,

which is the system of (max,min)-linear equations.
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Properties of the Inequality System.

I We can replace the inequality system (2) - (3) by

I x j ≤ xj ≤ xj(b) ∀j ∈ J, where

xj(b) = mini∈Ij r
−1
ij (bi ) ∧ x j ,∀j ∈ J and Ij = {i ∈ K ; aij > bi}

I If x solves the inequality system (1) - (3), it must be
x ≤ x ≤ x(b)
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Properties of the Inequality System.

I We replace system (1) - (3) by

I

max
j∈J

(aij ∧ rij(xj)) ≥ bi , i ∈ I (4)

x ≤ x ≤ x(b) (5)

I Let M(b) denote the set of solutions of system (4) - (5).

I If M(b) 6= ∅, then x ≤ x(b).
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Properties of the Inequality System.

I Let for all i ∈ I , j ∈ J

Tij = {xj ; x j ≤ xj ≤ xj(b) & aij ∧ rij(xj) ≥ bi}

˜

I Lemma 1.
If Tij 6= ∅, then

Tij = [max(x j , r
−1
ij (bi )), xj(b)]

.

I Lemma 2.
Let j ∈ J be fixed, I = {1, . . . , m}. Then there exists a
permutation {i1, . . . , im} of indices of I such that

Ti1j ⊆ Ti2j ⊆ . . . Timj .
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Properties of the Inequality System.

I Lemma 3.
M(b) 6= ∅ if and only if ∀i ∈ I ∃j(i) ∈ J such that Tij(i) 6= ∅.
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Incorrectly Posed Problems - Formulation.

I Let us consider the following system of equations:

I

ai (x) ≡ max
j∈J

(aij ∧ xj) = b̂i , i ∈ I (8)

where aij , b̂i ∈ R, ∀i ∈ I ≡ {1, . . . , m}, j ∈ J ≡ {1, . . . , n}.

I Let the set of solutions of system (8) be denoted M(b̂).

I Let M(b̂) = ∅.
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Incorrectly Posed Problems - Formulation.

I We will consider the following optimization problem:

I ∥∥∥b − b̂
∥∥∥ ≡ max

i∈I

∣∣∣bi − b̂i

∣∣∣ 7−→ min (9)

subject to

b ∈ R(A) ≡ {b ∈ Rm ; M(b) 6= ∅} (10)

I Note that

R(A) = {b ; ∃x ∈ Rn such that ai (x) = bi , ∀i ∈ I}.

and
R(A) = Range(A : Rn 7−→ Rm),

where we set A(x) = (a1(x), . . . , am(x)).
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Incorrectly Posed Problems - Reformulation.

I Let for any t ∈ R

M(b̂, t) ≡ {b ∈ R(A) ;
∥∥∥b − b̂

∥∥∥ ≤ t}.

I Let us consider the following optimization problem:

t 7−→ min (11)

subject to

M(b̂, t) 6= ∅ (12)

I Note that

M(b̂, t) = {b = A(x);∃x ∈ Rn such that b̂i−t ≤ ai (x) ≤ b̂i+t∀i}

Karel Zimmermann (Mahmoud Gad) Incorrectly Posed Systems of (max, min)-linear Equations and Inequalities.



Incorrectly Posed Problems - Reformulation.

I In other words M(b̂, t) 6= ∅ if and only if inequality system

b̂i−t ≤ ai (x) ∀i ∈ I & aij∧xj ≤ b̂i+t, ∀i ∈ I , ∀j ∈ J (13)

has a solution.

I Therefore M(b̂, t) is non-empty if system (13) is solvable.
Then problem (11)− (12) is equivalent to

I

t 7−→ min (14)

subject to (13) has a solution (15)
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Incorrectly Posed Problems - Reformulation.

I Let b̂ + t = (b̂1 + t, . . . , b̂m + t).

I Note that aij ∧ xj ≤ b̂i + t ∀i ∈ I , j ∈ J implies

I

xj ≤ xj(b̂ + t) ∀j ∈ J,

I where for all j ∈ J

xj(b̂ + t) ≡ min
k∈Ij (t)

b̂k + t, Ij(t) = {k ∈ I ; akj > b̂k + t}.
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Incorrectly Posed Problems - Reformulation.

I it follows that b = A(x) ∈ M(b̂, t) implies x ≤ x(b̂ + t).

I Let for all i ∈ I , j ∈ J

Tij(t) = {xj ; b̂i − t ≤ aij ∧ xj & xj ≤ xj(b̂ + t)},

I Note that
(a) Tij(t) 6= ∅ for a sufficiently large t;

(b) b̂i − t is strictly decreasing in t and xj(b̂ + t) is partially
continuous and strictly increasing in t with maximum m
jumps.
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Incorrectly Posed Problems - Reformulation.

I Lemma 4.
Tij(t) 6= ∅ if and only if b̂i − t ≤ aij ∧ xj(b̂ + t).

I Lemma 5.
For any i ∈ I , j ∈ J there exists τij such that Tij(t) 6= ∅ if and
only if t ≥ τij .

I Theorem 2.
Let topt be the optimal solution of optimization problem
(14)− (15) and bopt be the optimal solution of
optimization problem (9)− (10). Then we have:

topt = max
i∈I

min
j∈J

τij ,

bopt = A(x(b̂ + topt))
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Modifications of the Problem.

I (1) we can consider an unsolvable system of inequalities;

I (2) Additional restrictions on b ∈ R(A), e.g. bi = b̂i for some
i ∈ I ;

I (3) Changing of aij ’s instead of the right hand sides

Â− t ≤ A ≤ Â + t;

I (4) Other max-separable objective functions of the form

f (b) = maxi∈I fi (bi ) defined on R(A), e.g. maxi∈I wi

∣∣∣bi − b̂i

∣∣∣.
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Generalizations or Extensions of the Problem.

I We can consider systems of the form

max
j∈J

(aij ∧ rij(xj) = b̂i , i ∈ I ,

where rij : R 7−→ R are strictly increasing and continuous.

I We can consider various formulations of the problem for some
types of two-sided systems.

I Post optimal analysis of the problems (i.e. finding out which
changes will improve the value of the objective function).

I Interval coefficients.
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