

**** * * EVROPSKÁ UNIE

OP Vzdělávání pro konkurenceschopnost

> INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Streamlining the Applied Mathematics Studies at Faculty of Science of Palacký University in Olomouc CZ.1.07/2.2.00/15.0243

International Conference Olomoucian Days of Applied Mathematics

ODAM 2013

Department of Mathematical analysis and Applications of Mathematics Faculty of Science Palacký Univerzity Olomouc

Incorrectly Posed Systems of (max, min)-linear Equations and Inequalities.

Karel Zimmermann (Mahmoud Gad)

June 13, 2013

Karel Zimmermann (Mahmoud Gad) Incorrectly Posed Systems of (max, min)-linear Equations and I

- Notations
- Problem Formulation
- Possible Applications Motivation
- References Known Results
- Theoretical Background
- Algorithms
- Further Research

Basic Concepts.

• Max-separable function $f : \mathbb{R}^n \longmapsto \mathbb{R}$:

$$f(x) = \max_{j \in J} f_j(x_j),$$

where
$$J = 1, ..., n, x = (x_1, ..., x_n)$$
.

 Special cases: (max, +)-linear functions

$$f(x) = \max_{j \in J} (c_j + x_j),$$

(max, min)-linear functions

$$f(x) = \max_{j \in J}(\min(c_j, x_j)) = \max_{j \in J}(c_j \wedge x_j).$$

System of max-separable inequalities:

$$\max_{j\in J}(a_{ij}\wedge r_{ij}(x_j))\geq b_i,\ i\in I,$$
(1)

$$\max_{j\in J}(a_{ij}\wedge r_{ij}(x_j))\leq b_i,\ i\in K,$$
(2)

$$\underline{x}_j \le x_j \le \overline{x}_j, \ j \in J, \tag{3}$$

where a_{ij} , b_i , \underline{x}_j , $\overline{x}_j \in R$, $r_{ij} : R \mapsto R$, Range $(r_{ij}) = R$, continuous and strictly increasing functions, I, K finite index sets, $\alpha \land \beta \equiv \min(\alpha, \beta)$ for $\alpha, \beta \in R$.

- If r_{ij}(x_j) = d_{ij} + x_j and a_{ij} sufficiently large, we obtain a (max, +)-linear system.
- ▶ If $r_{ij}(x_j) = x_j$, we obtaining a (max, min)-linear system.

Karel Zimmermann (Mahmoud Gad) Incorrectly Posed Systems of (max, min)-linear Equations and I

[Vorobjov], [Korbut], [Carre], [Cuninghame-Green], [Gondran], [Minoux], [Helbig], [Nachtigal], [Olsder], [Maslov], [Litvinov], [Krivulin], [Pap], [Gaubert], [Akian], [de la Ponte], [Sergeyev], [Nitica], [Singer], [Nedoma], [Butkovic], [Gavalec], [Cechlarova], and others.

 $(R,\oplus,\otimes)=(\mathsf{max},+),\ (R,\oplus,\otimes)=(\mathsf{max},\mathsf{min})$ and others

$$f(x) = \Sigma_j^{\oplus}(c_j \otimes x_j) = c_1 \otimes x_1 \oplus \ldots c_n \otimes x_n$$

 (\oplus, \otimes) -linear functions.

- Extremal algebra, path algebra, max-min algebra, max-plus algebra, fuzzy algebra, idempotent algebra, tropical algebra etc
- Applications to machine time scheduling, capacity and reliability of networks, discrete event problems, fuzzy set problems.

Motivating Example 1

► Example 1.

- ► *a_{ij}*.....capacity of link *D_iP_j*;
- ► x_j.....capacity of link P_jT (to be found);
- $a_{ij} \wedge x_j$capacity of $D_i P_j T$;

•
$$a_i(x) = \max_{j \in J} = (a_{ij} \land x_j);$$

▶ Requirements: $a_i(x) = b_i, \forall i \in I \text{ or } \underline{b}_i \leq a_i(x) \leq \overline{b}_i \quad \forall i \in I$

Motivating Example 2

► Example 2.

▶ Let us assume that we have *m* fuzzy sets A_i , $i \in I \equiv \{1, ..., m\}$ with a finite support $J \equiv \{1, ..., n\}$ and membership functions $\mu_i : J \rightarrow [0, 1]$. We have to find fuzzy set X with membership function $\mu_X : J \rightarrow [0, 1]$. Let functions $\mu_{iX} : J \rightarrow [0, 1]$ be defined as follows:

$$\mu_{iX}(j) \equiv \mu_i(j) \wedge \mu_X(j),$$

where symbol \wedge is used to denote the minimum of two numbers, i.e. $\alpha \wedge \beta \equiv \min(\alpha, \beta)$ for any real numbers α, β . Then for each $i \in I$ function μ_{iX} is the membership function of the intersection of fuzzy set A_i and X.

The expressions

$$H_i(X) \equiv \max_{j \in J}(\mu_{iX}(j))$$

are the heights of the intersections of fuzzy sets A_i, X for all $i \in I$.

We require that the heights H_i(X) are equal b̂_i for all i ∈ I, i.e.

$$H_i(X) \equiv \max_{j \in J} (\mu_{iX}(j)) = \hat{b}_i, \ \forall i \in I.$$
 (*)

- Let us set $a_{ij} \equiv \mu_i(j), x_j \equiv \mu_X(j)$ for all $i \in I, j \in J$.
- Then in this new notations relations (*) have the form

$$\max_{j\in J}(a_{ij}\wedge x_j)=\hat{b}_i,\forall i\in I,$$

which is the system of (max, min)-linear equations.

▶ We can replace the inequality system (2) - (3) by

▶
$$\underline{x}_j \leq x_j \leq x_j(b) \quad \forall j \in J$$
, where
 $x_j(b) = \min_{i \in I_j} r_{ij}^{-1}(b_i) \land \overline{x}_j, \forall j \in J \text{ and } I_j = \{i \in K; a_{ij} > b_i\}$

If x solves the inequality system (1) - (3), it must be <u>x</u> ≤ x ≤ x(b)

Properties of the Inequality System.

▶ We replace system (1) - (3) by

$$\max_{j \in J} (a_{ij} \wedge r_{ij}(x_j)) \ge b_i, \ i \in I$$

$$\underline{x} \le x \le x(b)$$
(5)

• Let M(b) denote the set of solutions of system (4) - (5).

• If
$$M(b) \neq \emptyset$$
, then $\underline{x} \leq x(b)$.

Properties of the Inequality System.

► Let for all
$$i \in I$$
, $j \in J$

$$T_{ij} = \{x_j ; \underline{x}_j \le x_j \le x_j(b) \& a_{ij} \land r_{ij}(x_j) \ge b_i\}$$
~

• Lemma 1. If $T_{ij} \neq \emptyset$, then

$$T_{ij} = [\max(\underline{x}_j, r_{ij}^{-1}(b_i)), x_j(b)]$$

Lemma 2.

Let $j \in J$ be fixed, $l = \{1, \ldots, m\}$. Then there exists a permutation $\{i_1, \ldots, i_m\}$ of indices of l such that

$$T_{i_1j} \subseteq T_{i2j} \subseteq \ldots T_{i_mj}.$$

▶ Lemma 3. $M(b) \neq \emptyset$ if and only if $\forall i \in I \exists j(i) \in J$ such that $T_{ij(i)} \neq \emptyset$.

Let us consider the following system of equations:

$$a_i(x) \equiv \max_{j \in J} (a_{ij} \wedge x_j) = \hat{b}_i, \ i \in I$$
(8)

where a_{ij} , $\hat{b}_i \in R, \forall i \in I \equiv \{1, \ldots, m\}, j \in J \equiv \{1, \ldots, n\}$.

• Let the set of solutions of system (8) be denoted $M(\hat{b})$.

• Let
$$M(\hat{b}) = \emptyset$$
.

►

▶ We will consider the following optimization problem:

$$\left\| b - \hat{b} \right\| \equiv \max_{i \in I} \left| b_i - \hat{b}_i \right| \longmapsto \min$$
 (9)

subject to

$$b \in R(A) \equiv \{b \in R^m ; M(b) \neq \emptyset\}$$
(10)

Note that

$$R(A) = \{b \; ; \; \exists x \in R^n \; ext{such} \; \; ext{that} \; a_i(x) = b_i, \; orall i \in I\}.$$
 and

$$R(A) = Range(A : R^n \longmapsto R^m),$$

where we set $A(x) = (a_1(x), ..., a_m(x)).$

• Let for any $t \in R$

$$M(\hat{b},t) \equiv \{b \in R(A) ; \|b - \hat{b}\| \leq t\}.$$

Let us consider the following optimization problem:

$$t \mapsto \min$$
 (11)

subject to

$$M(\hat{b},t) \neq \emptyset \tag{12}$$

Note that

$$M(\hat{b},t) = \{b = A(x); \exists x \in R^n ext{ such that } \hat{b}_i - t \leq a_i(x) \leq \hat{b}_i + t orall i\}$$

▶ In other words $M(\hat{b}, t) \neq \emptyset$ if and only if inequality system

$$\hat{b}_i - t \leq a_i(x) \ \forall i \in I \ \& \ a_{ij} \land x_j \leq \hat{b}_i + t, \ \forall i \in I, \forall j \in J$$
 (13)

has a solution.

► Therefore M(b, t) is non-empty if system (13) is solvable. Then problem (11) - (12) is equivalent to

$$t \mapsto \min$$
 (14)

subject to (13) has a solution

(15)

• Let
$$\hat{b} + t = (\hat{b}_1 + t, \ldots, \hat{b}_m + t).$$

• where for all $j \in J$

$$x_j(\hat{b}+t) \equiv \min_{k \in I_j(t)} \hat{b}_k + t, \ I_j(t) = \{k \in I \ ; \ a_{kj} > \hat{b}_k + t\}.$$

• it follows that $b = A(x) \in M(\hat{b}, t)$ implies $x \le x(\hat{b} + t)$.

▶ Let for all
$$i \in I$$
, $j \in J$
 $T_{ij}(t) = \{x_j ; \hat{b}_i - t \le a_{ij} \land x_j \& x_j \le x_j(\hat{b} + t)\},$

Note that

(a) $T_{ij}(t) \neq \emptyset$ for a sufficiently large t; (b) $\hat{b}_i - t$ is strictly decreasing in t and $x_j(\hat{b} + t)$ is partially continuous and strictly increasing in t with maximum m jumps.

► Lemma 4.

 $\mathcal{T}_{ij}(t) \neq \emptyset$ if and only if $\hat{b}_i - t \leq a_{ij} \wedge x_j(\hat{b} + t)$.

Lemma 5.

For any $i \in I$, $j \in J$ there exists τ_{ij} such that $T_{ij}(t) \neq \emptyset$ if and only if $t \geq \tau_{ij}$.

Theorem 2.

Let t^{opt} be the optimal solution of optimization problem (14) - (15) and b^{opt} be the optimal solution of optimization problem (9) - (10). Then we have:

$$t^{opt} = \max_{i \in I} \min_{j \in J} \tau_{ij},$$

$$b^{opt} = A(x(\hat{b} + t^{opt}))$$

- ▶ (1) we can consider an unsolvable system of inequalities;
- ▶ (2) Additional restrictions on b ∈ R(A), e.g. b_i = b̂_i for some i ∈ I;
- (3) Changing of a_{ij}'s instead of the right hand sides − t ≤ A ≤ Â + t;
- ▶ (4) Other max-separable objective functions of the form $f(b) = \max_{i \in I} f_i(b_i)$ defined on R(A), e.g. $\max_{i \in I} w_i |b_i \hat{b}_i|$.

Generalizations or Extensions of the Problem.

We can consider systems of the form

$$\max_{j\in J}(a_{ij}\wedge r_{ij}(x_j)=\hat{b}_i,\ i\in I,$$

where $r_{ij}: R \longmapsto R$ are strictly increasing and continuous.

- We can consider various formulations of the problem for some types of two-sided systems.
- Post optimal analysis of the problems (i.e. finding out which changes will improve the value of the objective function).
- Interval coefficients.