evropský sociální fond v ČR

Streamlining the Applied Mathematics Studies at Faculty of Science of Palacký University in Olomouc CZ.1.07/2.2.00/15.0243

International Conference Olomoucian Days of Applied Mathematics

ODAM 2013

OP Vzdělávání pro konkurenceschopnost

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Department of Mathematical analysis and Applications of Mathematics
Faculty of Science
Palacký Univerzity Olomouc

Incorrectly Posed Systems of (max, min)-linear Equations and Inequalities.

Karel Zimmermann
(Mahmoud Gad)

June 13, 2013

CONTENT:

- Notations
- Problem Formulation
- Possible Applications - Motivation
- References - Known Results
- Theoretical Background
- Algorithms
- Further Research

Basic Concepts.

- Max-separable function $f: R^{n} \longmapsto R$:

$$
f(x)=\max _{j \in J} f_{j}\left(x_{j}\right)
$$

where $J=1, \ldots, n, x=\left(x_{1}, \ldots, x_{n}\right)$.

- Special cases:
(max, +)-linear functions

$$
f(x)=\max _{j \in J}\left(c_{j}+x_{j}\right)
$$

(max, min)-linear functions

$$
f(x)=\max _{j \in J}\left(\min \left(c_{j}, x_{j}\right)\right)=\max _{j \in J}\left(c_{j} \wedge x_{j}\right) .
$$

Basic Concepts.

- System of max-separable inequalities:

$$
\begin{align*}
& \max _{j \in J}\left(a_{i j} \wedge r_{i j}\left(x_{j}\right)\right) \geq b_{i}, \quad i \in I \tag{1}\\
& \max _{j \in J}\left(a_{i j} \wedge r_{i j}\left(x_{j}\right)\right) \leq b_{i}, \quad i \in K \tag{2}\\
& \underline{x}_{j} \leq x_{j} \leq \bar{x}_{j}, j \in J \tag{3}
\end{align*}
$$

where $a_{i j}, b_{i}, \underline{x}_{j}, \bar{x}_{j} \in R, r_{i j}: R \longmapsto R$, Range $\left(r_{i j}\right)=R$, continuous and strictly increasing functions, I, K finite index sets, $\alpha \wedge \beta \equiv \min (\alpha, \beta)$ for $\alpha, \beta \in R$.

- If $r_{i j}\left(x_{j}\right)=d_{i j}+x_{j}$ and $a_{i j}$ sufficiently large, we obtain a (max, +)-linear system.
- If $r_{i j}\left(x_{j}\right)=x_{j}$, we obtaining a (max, min)-linear system.
[Vorobjov], [Korbut], [Carre], [Cuninghame-Green], [Gondran], [Minoux], [Helbig], [Nachtigal], [Olsder], [Maslov], [Litvinov], [Krivulin], [Pap], [Gaubert], [Akian], [de la Ponte], [Sergeyev], [Nitica], [Singer], [Nedoma], [Butkovic], [Gavalec], [Cechlarova], and others. $(R, \oplus, \otimes)=(\max ,+),(R, \oplus, \otimes)=(\max , \min)$ and others

$$
f(x)=\Sigma_{j}^{\oplus}\left(c_{j} \otimes x_{j}\right)=c_{1} \otimes x_{1} \oplus \ldots c_{n} \otimes x_{n}
$$

(\oplus, \otimes)-linear functions.

- Extremal algebra, path algebra, max-min algebra, max-plus algebra, fuzzy algebra, idempotent algebra, tropical algebra etc
- Applications to machine time scheduling, capacity and reliability of networks, discrete event problems, fuzzy set problems.

Motivating Example 1

- Example 1.
- $a_{i j}$.............................capacity of link $D_{i} P_{j}$;
- $x_{j} \ldots \ldots \ldots$. capacity of link $P_{j} T$ (to be found);
- $a_{i j} \wedge x_{j} \ldots \ldots \ldots . .$. capacity of $D_{i} P_{j} T$;
- $a_{i}(x)=\max _{j \in J}=\left(a_{i j} \wedge x_{j}\right)$;
- Requirements:

$$
a_{i}(x)=b_{i}, \forall i \in I \text { or } \underline{b}_{i} \leq a_{i}(x) \leq \bar{b}_{i} \quad \forall i \in I
$$

Motivating Example 2

- Example 2.
- Let us assume that we have m fuzzy sets A_{i}, $i \in I \equiv\{1, \ldots, m\}$ with a finite support $J \equiv\{1, \ldots, n\}$ and membership functions $\mu_{i}: J \rightarrow[0,1]$. We have to find fuzzy set X with membership function $\mu_{X}: J \rightarrow[0,1]$. Let functions $\mu_{i X}: J \rightarrow[0,1]$ be defined as follows:

$$
\mu_{i X}(j) \equiv \mu_{i}(j) \wedge \mu_{X}(j)
$$

where symbol \wedge is used to denote the minimum of two numbers, i.e. $\alpha \wedge \beta \equiv \min (\alpha, \beta)$ for any real numbers α, β. Then for each $i \in I$ function $\mu_{i x}$ is the membership function of the intersection of fuzzy set A_{i} and X.

Motivating Example 2 - conitnued.

- The expressions

$$
H_{i}(X) \equiv \max _{j \in J}\left(\mu_{i X}(j)\right)
$$

are the heights of the intersections of fuzzy sets A_{i}, X for all $i \in I$.

- We require that the heights $H_{i}(X)$ are equal \hat{b}_{i} for all $i \in I$, i.e.

$$
\begin{equation*}
H_{i}(X) \equiv \max _{j \in J}\left(\mu_{i x}(j)\right)=\hat{b}_{i}, \forall i \in I \tag{*}
\end{equation*}
$$

Motivating Example 2 - conitnued.

- Let us set $a_{i j} \equiv \mu_{i}(j), x_{j} \equiv \mu_{X}(j)$ for all $i \in I, j \in J$.
- Then in this new notations relations $\left(^{*}\right)$ have the form

$$
\max _{j \in J}\left(a_{i j} \wedge x_{j}\right)=\hat{b}_{i}, \forall i \in I
$$

which is the system of (max, min)-linear equations.

Properties of the Inequality System.

- We can replace the inequality system (2) - (3) by
- $\underline{x}_{j} \leq x_{j} \leq x_{j}(b) \quad \forall j \in J$, where

$$
x_{j}(b)=\min _{i \in I_{j}} r_{i j}^{-1}\left(b_{i}\right) \wedge \bar{x}_{j}, \forall j \in J \text { and } I_{j}=\left\{i \in K ; a_{i j}>b_{i}\right\}
$$

- If x solves the inequality system (1) - (3), it must be $x \leq x \leq x(b)$

Properties of the Inequality System.

- We replace system (1) - (3) by

$$
\begin{align*}
& \max _{j \in J}\left(a_{i j} \wedge r_{i j}\left(x_{j}\right)\right) \geq b_{i}, \quad i \in I \tag{4}\\
& \underline{x} \leq x \leq x(b) \tag{5}
\end{align*}
$$

- Let $M(b)$ denote the set of solutions of system (4) - (5).
- If $M(b) \neq \emptyset$, then $\underline{x} \leq x(b)$.

Properties of the Inequality System.

- Let for all $i \in I, j \in J$

$$
T_{i j}=\left\{x_{j} ; \underline{x}_{j} \leq x_{j} \leq x_{j}(b) \& a_{i j} \wedge r_{i j}\left(x_{j}\right) \geq b_{i}\right\}
$$

- Lemma 1.

If $T_{i j} \neq \emptyset$, then

$$
T_{i j}=\left[\max \left(\underline{x}_{j}, r_{i j}^{-1}\left(b_{i}\right)\right), x_{j}(b)\right]
$$

- Lemma 2.

Let $j \in J$ be fixed, $I=\{1, \ldots, m\}$. Then there exists a permutation $\left\{i_{1}, \ldots, i_{m}\right\}$ of indices of I such that

$$
T_{i_{1} j} \subseteq T_{i 2 j} \subseteq \ldots T_{i_{m} j}
$$

Properties of the Inequality System.

- Lemma 3.
$M(b) \neq \emptyset$ if and only if $\forall i \in I \exists j(i) \in J$ such that $T_{i j(i)} \neq \emptyset$.

Incorrectly Posed Problems - Formulation.

- Let us consider the following system of equations:

$$
\begin{equation*}
a_{i}(x) \equiv \max _{j \in J}\left(a_{i j} \wedge x_{j}\right)=\hat{b}_{i}, \quad i \in I \tag{8}
\end{equation*}
$$

where $a_{i j}, \hat{b}_{i} \in R, \forall i \in I \equiv\{1, \ldots, m\}, j \in J \equiv\{1, \ldots, n\}$.

- Let the set of solutions of system (8) be denoted $M(\hat{b})$.
- Let $M(\hat{b})=\emptyset$.

Incorrectly Posed Problems - Formulation.

- We will consider the following optimization problem:

$$
\begin{equation*}
\|b-\hat{b}\| \equiv \max _{i \in I}\left|b_{i}-\hat{b}_{i}\right| \longmapsto \min \tag{9}
\end{equation*}
$$

subject to

$$
\begin{equation*}
b \in R(A) \equiv\left\{b \in R^{m} ; M(b) \neq \emptyset\right\} \tag{10}
\end{equation*}
$$

- Note that

$$
R(A)=\left\{b ; \exists x \in R^{n} \text { such that } a_{i}(x)=b_{i}, \forall i \in I\right\}
$$

and

$$
R(A)=\operatorname{Range}\left(A: R^{n} \longmapsto R^{m}\right)
$$

where we set $A(x)=\left(a_{1}(x), \ldots, a_{m}(x)\right)$.

Incorrectly Posed Problems - Reformulation.

- Let for any $t \in R$

$$
M(\hat{b}, t) \equiv\{b \in R(A) ;\|b-\hat{b}\| \leq t\}
$$

- Let us consider the following optimization problem:

$$
\begin{equation*}
t \longmapsto \min \tag{11}
\end{equation*}
$$

subject to

$$
\begin{equation*}
M(\hat{b}, t) \neq \emptyset \tag{12}
\end{equation*}
$$

- Note that

$$
M(\hat{b}, t)=\left\{b=A(x) ; \exists x \in R^{n} \text { such that } \hat{b}_{i}-t \leq a_{i}(x) \leq \hat{b}_{i}+t \forall i\right\}
$$

Incorrectly Posed Problems - Reformulation.

- In other words $M(\hat{b}, t) \neq \emptyset$ if and only if inequality system

$$
\begin{equation*}
\hat{b}_{i}-t \leq a_{i}(x) \forall i \in I \& a_{i j} \wedge x_{j} \leq \hat{b}_{i}+t, \forall i \in I, \forall j \in J \tag{13}
\end{equation*}
$$

has a solution.

- Therefore $M(\hat{b}, t)$ is non-empty if system (13) is solvable. Then problem (11) - (12) is equivalent to

$$
\begin{equation*}
t \longmapsto \min \tag{14}
\end{equation*}
$$

subject to (13) has a solution

Incorrectly Posed Problems - Reformulation.

- Let $\hat{b}+t=\left(\hat{b}_{1}+t, \ldots, \hat{b}_{m}+t\right)$.
- Note that $a_{i j} \wedge x_{j} \leq \hat{b}_{i}+t \forall i \in I, j \in J$ implies

$$
x_{j} \leq x_{j}(\hat{b}+t) \quad \forall j \in J
$$

- where for all $j \in J$

$$
x_{j}(\hat{b}+t) \equiv \min _{k \in l_{j}(t)} \hat{b}_{k}+t, I_{j}(t)=\left\{k \in I ; a_{k j}>\hat{b}_{k}+t\right\}
$$

Incorrectly Posed Problems - Reformulation.

- it follows that $b=A(x) \in M(\hat{b}, t)$ implies $x \leq x(\hat{b}+t)$.
- Let for all $i \in I, j \in J$

$$
T_{i j}(t)=\left\{x_{j} ; \hat{b}_{i}-t \leq a_{i j} \wedge x_{j} \& x_{j} \leq x_{j}(\hat{b}+t)\right\}
$$

- Note that
(a) $T_{i j}(t) \neq \emptyset$ for a sufficiently large t;
(b) $\hat{b}_{i}-t$ is strictly decreasing in t and $x_{j}(\hat{b}+t)$ is partially continuous and strictly increasing in t with maximum m jumps.

Incorrectly Posed Problems - Reformulation.

- Lemma 4. $T_{i j}(t) \neq \emptyset$ if and only if $\hat{b}_{i}-t \leq a_{i j} \wedge x_{j}(\hat{b}+t)$.
- Lemma 5.

For any $i \in I, j \in J$ there exists $\tau_{i j}$ such that $T_{i j}(t) \neq \emptyset$ if and only if $t \geq \tau_{i j}$.

- Theorem 2.

Let $t^{o p t}$ be the optimal solution of optimization problem (14) - (15) and $b^{o p t}$ be the optimal solution of optimization problem (9) - (10). Then we have:

$$
\begin{gathered}
t^{o p t}=\max _{i \in I} \min _{j \in J} \tau_{i j} \\
b^{o p t}=A\left(x\left(\hat{b}+t^{o p t}\right)\right)
\end{gathered}
$$

Modifications of the Problem.

- (1) we can consider an unsolvable system of inequalities;
- (2) Additional restrictions on $b \in R(A)$, e.g. $b_{i}=\hat{b}_{i}$ for some $i \in I$;
- (3) Changing of $a_{i j}$'s instead of the right hand sides $\hat{A}-t \leq A \leq \hat{A}+t$;
- (4) Other max-separable objective functions of the form $f(b)=\max _{i \in I} f_{i}\left(b_{i}\right)$ defined on $R(A)$, e.g. $\max _{i \in I} w_{i}\left|b_{i}-\hat{b}_{i}\right|$.

Generalizations or Extensions of the Problem.

- We can consider systems of the form

$$
\max _{j \in J}\left(a_{i j} \wedge r_{i j}\left(x_{j}\right)=\hat{b}_{i}, \quad i \in I\right.
$$

where $r_{i j}: R \longmapsto R$ are strictly increasing and continuous.

- We can consider various formulations of the problem for some types of two-sided systems.
- Post optimal analysis of the problems (i.e. finding out which changes will improve the value of the objective function).
- Interval coefficients.

